Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA

Yıl 2024, Cilt: 48 Sayı: 3, 903 - 911, 10.09.2024
https://doi.org/10.33483/jfpau.1452000

Öz

Objective: Cultivation location and maturity levels could affect Muntingia calabura's bioactive compounds and biological activities. The present investigation evaluated two different maturity stages (young and ripened) of Indonesian M. calabura on their phytochemical constituents (total phenolic [TP] and total flavonoid [TF]), antioxidant activity, and nutrition composition.
Material and Method: The TP and TF were measured using the Folin-Ciocalteau reagent and ammonium chloride (AlCl3). Antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS). Nutrition composition: total soluble solids (TSS) were determined by the gravimetric method; soluble sugars used anthrone-sulfuric acid colorimetric assays; and vitamin C established 2,6-dichloroindophenol (DCIP) titration.
Result and Discussion: The ripened fruit presented the most potent antioxidant activity. DPPH and ABTS IC50 values were 28.38 ± 0.84 µg/ml and 29.92 ± 3.05 µg/ml, respectively. In contrast, the young fruit exhibited the highest TP (56.85 ± 1.08 mg/g GAE) and TF (8.45 ± 0.65 mg QE). Our findings additionally suggested that ripened fruit was a good source of nutrients, such as soluble sugar (SS; 12.34 ± 0.76%) and vitamin C (21.88 ± 2.73 mg/g).

Etik Beyan

The authors declare that ethics committee approval is not required for this study.

Destekleyen Kurum

None

Teşekkür

The authors wish to give thanks to Almarisah Madani University, South Sulawesi, Indonesia, given a research laboratory to carry out this work.

Kaynakça

  • 1. Gusti, A.M.T., Qusti, S.Y., Alshammari, E.M., Toraih, E.A., Fawzy, M.S. (2021). Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants, 10(4), e595. [CrossRef]
  • 2. Ighodaro, O.M., Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293. [CrossRef]
  • 3. Caiati, C., Stanca, A., Lepera, M.E. (2023). Free radicals and obesity-related chronic inflammation contrasted by antioxidants: A new perspective in coronary artery disease. Metabolites, 13(6), e712. [CrossRef]
  • 4. Asmat, U., Abad, K., Ismail, K. (2016). Diabetes mellitus and oxidative stress - A concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. [CrossRef]
  • 5. Panda, P., Verma, H.K., Lakkakula, S., Merchant, N., Kadir, F., Rahman, S., Jeffree, M.S., Lakkakula, B.V.K.S., Rao, P.V. (2022). Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxidative Medicine and Cellular Longevity, e9154295. [CrossRef]
  • 6. Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., Calina, D., Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11, e1158198. [CrossRef]
  • 7. Bailo, P.S., Martín, E.L., Calmarza, P., Breva, S.M., Gómez, A.B., Giráldez, A.P., Callau, J.J.S.P., Santamaría, J.M.V., Khialani, A.D., Micó, C.C., Andreu, J.C., Tormo, G.S., Gallifa, I.F. (2022). The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Advances in Laboratory Medicine, 3(4), 342-350. [CrossRef]
  • 8. Sharma, C., Kim, S.R. (2023). Oxidative stress: Culprit or consequence in Alzheimer's amyloidopathy. Neural Regeneration Research, 18(9), 1948-1949. [CrossRef]
  • 9. Ambati, P., Harshini, V., Gayathri, H. (2020). Development of Muntingia calabura fruit based squash. Asian Journal of Dairy and Food Research, 39(3), 256-260. [CrossRef]
  • 10. Muslimin, L., Rini, Hasyim, I., Yusuf, N.F., Mubarak, F., Yulianty, R. (2019). Nutrient content, mineral content and antioxidant activity of Muntingia calabura Linn. Pakistan Journal of Nutrition, 18(8), 726-732. [CrossRef]
  • 11. Tamilselvi, E. (2020). Nutritional quality assessment and value addition of Muntingia calabura L. (Singapore cherry) fruits. International Archive of Applied Science and Technolgy, 11(1), 94-97.
  • 12. Mokhtar, M., Bouamar, S., Di Lorenzo, A., Temporini, C., Daglia, M., Riazi, A. (2021). The influence of ripeness on the phenolic content, antioxidant and antimicrobial activities of pumpkins (Cucurbita moschata Duchesne). Molecules, 26(12), e3623. [CrossRef]
  • 13. Soares, S., Brandão, E., Guerreiro, C., Soares, S., Mateus, N., de Freitas, V. (2020). Tannins in food: Insights into the molecular perception of astringency and bitter taste. Molecules, 25(11), e2590. [CrossRef]
  • 14. Pakki, E., Tayeb, R., Usmar, U., Ridwan, I.A., Muslimin, L. (2020). Effect of orally administered combination of Caulerpa racemosa and Eleutherine americana (Aubl) Merr extracts on phagocytic activity of macrophage. Research in Pharmaceutical Sciences, 15(4), 401-409. [CrossRef]
  • 15. Wołosiak, R., Drużyńska, B., Derewiaka, D., Piecyk, M., Majewska, E., Ciecierska, M., Worobiej, E., Pakosz, P. (2022). Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays: A practical approach. Molecules, 27(1), e50. [CrossRef]
  • 16. Wang, C., Zhou, J., Zhang, S., Gao, X., Yang, Y., Hou, J., Chen, G., Tang, X., Wu, J., Yuan, L. (2023). Combined metabolome and transcriptome analysis elucidates sugar accumulation in wucai (Brassica campestris L.). International Journal of Molecular Sciences, 24(5), e4816. [CrossRef]
  • 17. Karasawa, M.M.G., Mohan, C. (2018). Fruits as prospective reserves of bioactive compounds: A review. Natural Products and Bioprospecting, 8(5), 335-346. [CrossRef]
  • 18. Chen, C., Mokhtar, R.A.M., Sani, M.S.A., Noor, N.Q.I.M. (2022). The effect of maturity and extraction solvents on bioactive compounds and antioxidant activity of mulberry (Morus alba) fruits and leaves. Molecules, 27(8), e2406. [CrossRef]
  • 19. Camirand Lemyre, F., Chalifoux, K., Desharnais, B., Mireault, P. (2022). Squaring things up with R2: What it is and what it can (and cannot) tell you. Journal of Analytical Toxicology, 46(4), 443-448. [CrossRef]
  • 20. Pereira, G.A., Arruda, H.S., de Morais, D.R., Eberlin, M.N., Pastore, G.M. (2018). Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Research International, 108, 264-273. [CrossRef]
  • 21. Koshy, K.C., Gopakumar, B., Sebastian, A., Nair, A.S., Johnson, A.J., Govindan, B., Baby, S. (2022). Flower-fruit dynamics, visitor-predator patterns and chemical preferences in the tropical bamboo, Melocanna baccifera. PLoS One, 17(11), e0277341. [CrossRef]
  • 22. Kuzma, J.N., Schmidt, K.A., Kratz, M. (2017). Prevention of metabolic diseases: Fruits (including fruit sugars) vs. vegetables. Current Opinion in Clinical Nutrition and Metabolic Care, 20(4), 286-293. [CrossRef]
  • 23. Panchal, S.K., Brown, L. (2022). Tropical fruits from Australia as potential treatments for metabolic syndrome. Current Opinion in Pharmacology, 63, e102182. [CrossRef]
  • 24. Nur, S., Aswad, M., Yulianti, R., Sami, F.J., Burhan, A., Fadri, A., Khairi, N., Nursamsiar. (2022). Antioxidant activity profile of extract and fraction of kersen (Muntingia calabura L.) fruits prepared by different methods. IOP Conference Series: Earth and Environmental Science, 976(1), e012066. [CrossRef]
  • 25. Zolkeflee, N.K.Z., Isamail, N.A., Maulidiani, M., Abdul Hamid, N.A., Ramli, N.S., Azlan, A., Abas, F. (2021). Metabolite variations and antioxidant activity of Muntingia calabura leaves in response to different drying methods and ethanol ratios elucidated by NMR-based metabolomics. Phytochemical Analysis, 32(1), 69-83. [CrossRef]
  • 26. Belwal, T., Pandey, A., Bhatt, I.D., Rawal, R.S., Luo, Z. (2019). Trends of polyphenolics and anthocyanins accumulation along ripening stages of wild edible fruits of Indian Himalayan region. Scientific Reports, 9(1), e5894. [CrossRef]
  • 27. Samaniego, I., Brito, B., Viera, W., Cabrera, A., Llerena, W., Kannangara, T., Vilcacundo, R., Angós, I., Carrillo, W. (2020). Influence of the maturity stage on the phytochemical composition and the antioxidant activity of four andean blackberry cultivars (Rubus glaucus Benth) from Ecuador. Plants (Basel), 9(8), e1027. [CrossRef]
  • 28. Dong, X., Hu, Y., Li, Y., Zhou, Z. (2019). The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia Horticulturae, 243, 281-289. [CrossRef]
  • 29. Gull, J., Sultana, B., Anwar, F., Naseer, R., Ashraf, M., Ashrafuzzaman, M. (2012). Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan. Molecules, 17(3), 3165-3180. [CrossRef]
  • 30. Soares, F.D., Pereira, T., Maio Marques, M.O., Monteiro, A.R. (2007). Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chemistry, 100(1), 15-21. [CrossRef]
  • 31. Caritá, A.C., Fonseca-Santos, B., Shultz, J.D., Michniak-Kohn, B., Chorilli, M., Leonardi, G.R. (2020). Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine: Nanotechnology, Biology and Medicine, 24, e102117. [CrossRef]
  • 32. Khadim, R.M., Al-Fartusie, F.S. (2021). Antioxidant vitamins and their effect on immune system. Journal of Physics: Conference Series, 1853(1), e012065. [CrossRef]
  • 33. Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids, National Academy Press, Washington, p. 95-185.

MATURİTENİN, ENDONEZYA'DA YETİŞTİRİLEN MUNTINGIA CALABURA MEYVELERİNİN FİTOKİMYASAL BİLEŞENLERİ, ANTİOKSİDAN AKTİVİTESİ VE BESİN KOMPOZİSYONU ÜZERİNDEKİ ETKİSİ

Yıl 2024, Cilt: 48 Sayı: 3, 903 - 911, 10.09.2024
https://doi.org/10.33483/jfpau.1452000

Öz

Amaç: Yetiştirme yeri ve olgunluk seviyeleri, Muntingia calabura'nın biyoaktif bileşenlerini ve biyolojik aktivitelerini etkileyebilir. Bu çalışmada, Endonezya'da yetiştirilen M. calabura'nın iki farklı olgunluk aşaması (genç ve olgun) fitokimyasal bileşenleri (toplam fenolik [TP] ve toplam flavonoid [TF]), antioksidan aktivitesi ve besin kompozisyonu açısından değerlendirildi.
Gereç ve Yöntem: TP ve TF, Folin-Ciocalteau reaktifi ve amonyum klorür (AlCl3) kullanılarak ölçüldü. Antioksidan aktivitesi, 2,2-difenil-1-pikrilhidrazil (DPPH) ve 2,2′-azino-bis(3-etilbenzotiyazolin-6-sülfonik) asit (ABTS) kullanılarak değerlendirildi. Besin kompozisyonu: toplam çözünür katılar (TSS) gravimetrik yöntemle; çözünür şekerler, antron-sülfürik asit kolorimetrik testleri ile; ve vitamin C, 2,6-dikloroindofenol (DCIP) titrasyonu ile belirlendi.
Sonuç ve Tartışma: Olgunlaşmış meyve, en güçlü antioksidan aktiviteyi gösterdi. DPPH ve ABTS IC50 değerleri sırasıyla 28.38 ± 0.84 µg/ml ve 29.92 ± 3.05 µg/ml idi. Buna karşılık, genç meyve en yüksek TP (56.85 ± 1.08 mg/g GAE) ve TF (8.45 ± 0.65 mg QE) değerlerini gösterdi. Bulgularımız ayrıca, olgunlaşmış meyvenin çözünür şeker (SS; %12.34 ± 0.76) ve vitamin C (21.88 ± 2.73 mg/g) gibi besinlerin iyi bir kaynağı olduğunu öne sürdü.

Kaynakça

  • 1. Gusti, A.M.T., Qusti, S.Y., Alshammari, E.M., Toraih, E.A., Fawzy, M.S. (2021). Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants, 10(4), e595. [CrossRef]
  • 2. Ighodaro, O.M., Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293. [CrossRef]
  • 3. Caiati, C., Stanca, A., Lepera, M.E. (2023). Free radicals and obesity-related chronic inflammation contrasted by antioxidants: A new perspective in coronary artery disease. Metabolites, 13(6), e712. [CrossRef]
  • 4. Asmat, U., Abad, K., Ismail, K. (2016). Diabetes mellitus and oxidative stress - A concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. [CrossRef]
  • 5. Panda, P., Verma, H.K., Lakkakula, S., Merchant, N., Kadir, F., Rahman, S., Jeffree, M.S., Lakkakula, B.V.K.S., Rao, P.V. (2022). Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxidative Medicine and Cellular Longevity, e9154295. [CrossRef]
  • 6. Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., Calina, D., Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11, e1158198. [CrossRef]
  • 7. Bailo, P.S., Martín, E.L., Calmarza, P., Breva, S.M., Gómez, A.B., Giráldez, A.P., Callau, J.J.S.P., Santamaría, J.M.V., Khialani, A.D., Micó, C.C., Andreu, J.C., Tormo, G.S., Gallifa, I.F. (2022). The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Advances in Laboratory Medicine, 3(4), 342-350. [CrossRef]
  • 8. Sharma, C., Kim, S.R. (2023). Oxidative stress: Culprit or consequence in Alzheimer's amyloidopathy. Neural Regeneration Research, 18(9), 1948-1949. [CrossRef]
  • 9. Ambati, P., Harshini, V., Gayathri, H. (2020). Development of Muntingia calabura fruit based squash. Asian Journal of Dairy and Food Research, 39(3), 256-260. [CrossRef]
  • 10. Muslimin, L., Rini, Hasyim, I., Yusuf, N.F., Mubarak, F., Yulianty, R. (2019). Nutrient content, mineral content and antioxidant activity of Muntingia calabura Linn. Pakistan Journal of Nutrition, 18(8), 726-732. [CrossRef]
  • 11. Tamilselvi, E. (2020). Nutritional quality assessment and value addition of Muntingia calabura L. (Singapore cherry) fruits. International Archive of Applied Science and Technolgy, 11(1), 94-97.
  • 12. Mokhtar, M., Bouamar, S., Di Lorenzo, A., Temporini, C., Daglia, M., Riazi, A. (2021). The influence of ripeness on the phenolic content, antioxidant and antimicrobial activities of pumpkins (Cucurbita moschata Duchesne). Molecules, 26(12), e3623. [CrossRef]
  • 13. Soares, S., Brandão, E., Guerreiro, C., Soares, S., Mateus, N., de Freitas, V. (2020). Tannins in food: Insights into the molecular perception of astringency and bitter taste. Molecules, 25(11), e2590. [CrossRef]
  • 14. Pakki, E., Tayeb, R., Usmar, U., Ridwan, I.A., Muslimin, L. (2020). Effect of orally administered combination of Caulerpa racemosa and Eleutherine americana (Aubl) Merr extracts on phagocytic activity of macrophage. Research in Pharmaceutical Sciences, 15(4), 401-409. [CrossRef]
  • 15. Wołosiak, R., Drużyńska, B., Derewiaka, D., Piecyk, M., Majewska, E., Ciecierska, M., Worobiej, E., Pakosz, P. (2022). Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays: A practical approach. Molecules, 27(1), e50. [CrossRef]
  • 16. Wang, C., Zhou, J., Zhang, S., Gao, X., Yang, Y., Hou, J., Chen, G., Tang, X., Wu, J., Yuan, L. (2023). Combined metabolome and transcriptome analysis elucidates sugar accumulation in wucai (Brassica campestris L.). International Journal of Molecular Sciences, 24(5), e4816. [CrossRef]
  • 17. Karasawa, M.M.G., Mohan, C. (2018). Fruits as prospective reserves of bioactive compounds: A review. Natural Products and Bioprospecting, 8(5), 335-346. [CrossRef]
  • 18. Chen, C., Mokhtar, R.A.M., Sani, M.S.A., Noor, N.Q.I.M. (2022). The effect of maturity and extraction solvents on bioactive compounds and antioxidant activity of mulberry (Morus alba) fruits and leaves. Molecules, 27(8), e2406. [CrossRef]
  • 19. Camirand Lemyre, F., Chalifoux, K., Desharnais, B., Mireault, P. (2022). Squaring things up with R2: What it is and what it can (and cannot) tell you. Journal of Analytical Toxicology, 46(4), 443-448. [CrossRef]
  • 20. Pereira, G.A., Arruda, H.S., de Morais, D.R., Eberlin, M.N., Pastore, G.M. (2018). Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Research International, 108, 264-273. [CrossRef]
  • 21. Koshy, K.C., Gopakumar, B., Sebastian, A., Nair, A.S., Johnson, A.J., Govindan, B., Baby, S. (2022). Flower-fruit dynamics, visitor-predator patterns and chemical preferences in the tropical bamboo, Melocanna baccifera. PLoS One, 17(11), e0277341. [CrossRef]
  • 22. Kuzma, J.N., Schmidt, K.A., Kratz, M. (2017). Prevention of metabolic diseases: Fruits (including fruit sugars) vs. vegetables. Current Opinion in Clinical Nutrition and Metabolic Care, 20(4), 286-293. [CrossRef]
  • 23. Panchal, S.K., Brown, L. (2022). Tropical fruits from Australia as potential treatments for metabolic syndrome. Current Opinion in Pharmacology, 63, e102182. [CrossRef]
  • 24. Nur, S., Aswad, M., Yulianti, R., Sami, F.J., Burhan, A., Fadri, A., Khairi, N., Nursamsiar. (2022). Antioxidant activity profile of extract and fraction of kersen (Muntingia calabura L.) fruits prepared by different methods. IOP Conference Series: Earth and Environmental Science, 976(1), e012066. [CrossRef]
  • 25. Zolkeflee, N.K.Z., Isamail, N.A., Maulidiani, M., Abdul Hamid, N.A., Ramli, N.S., Azlan, A., Abas, F. (2021). Metabolite variations and antioxidant activity of Muntingia calabura leaves in response to different drying methods and ethanol ratios elucidated by NMR-based metabolomics. Phytochemical Analysis, 32(1), 69-83. [CrossRef]
  • 26. Belwal, T., Pandey, A., Bhatt, I.D., Rawal, R.S., Luo, Z. (2019). Trends of polyphenolics and anthocyanins accumulation along ripening stages of wild edible fruits of Indian Himalayan region. Scientific Reports, 9(1), e5894. [CrossRef]
  • 27. Samaniego, I., Brito, B., Viera, W., Cabrera, A., Llerena, W., Kannangara, T., Vilcacundo, R., Angós, I., Carrillo, W. (2020). Influence of the maturity stage on the phytochemical composition and the antioxidant activity of four andean blackberry cultivars (Rubus glaucus Benth) from Ecuador. Plants (Basel), 9(8), e1027. [CrossRef]
  • 28. Dong, X., Hu, Y., Li, Y., Zhou, Z. (2019). The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia Horticulturae, 243, 281-289. [CrossRef]
  • 29. Gull, J., Sultana, B., Anwar, F., Naseer, R., Ashraf, M., Ashrafuzzaman, M. (2012). Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan. Molecules, 17(3), 3165-3180. [CrossRef]
  • 30. Soares, F.D., Pereira, T., Maio Marques, M.O., Monteiro, A.R. (2007). Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chemistry, 100(1), 15-21. [CrossRef]
  • 31. Caritá, A.C., Fonseca-Santos, B., Shultz, J.D., Michniak-Kohn, B., Chorilli, M., Leonardi, G.R. (2020). Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine: Nanotechnology, Biology and Medicine, 24, e102117. [CrossRef]
  • 32. Khadim, R.M., Al-Fartusie, F.S. (2021). Antioxidant vitamins and their effect on immune system. Journal of Physics: Conference Series, 1853(1), e012065. [CrossRef]
  • 33. Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids, National Academy Press, Washington, p. 95-185.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmakognozi, Farmasotik Botanik
Bölüm Araştırma Makalesi
Yazarlar

Hendrawan Hasanuddin Murni 0009-0008-5720-908X

Nur Khairi 0009-0008-3958-1507

Alfat Fadri 0000-0002-0751-0404

Wahyuddin Wahyuddin 0009-0004-0282-0325

Andi Nur Aisyah 0000-0002-5243-384X

Amriani Sapra 0000-0001-7474-9290

Maulita Indrısarı 0000-0003-2559-838X

Lukman Muslimin 0000-0002-5703-3714

Erken Görünüm Tarihi 14 Temmuz 2024
Yayımlanma Tarihi 10 Eylül 2024
Gönderilme Tarihi 15 Mart 2024
Kabul Tarihi 20 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 3

Kaynak Göster

APA Murni, H. H., Khairi, N., Fadri, A., Wahyuddin, W., vd. (2024). THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA. Journal of Faculty of Pharmacy of Ankara University, 48(3), 903-911. https://doi.org/10.33483/jfpau.1452000
AMA Murni HH, Khairi N, Fadri A, Wahyuddin W, Aisyah AN, Sapra A, Indrısarı M, Muslimin L. THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA. Ankara Ecz. Fak. Derg. Eylül 2024;48(3):903-911. doi:10.33483/jfpau.1452000
Chicago Murni, Hendrawan Hasanuddin, Nur Khairi, Alfat Fadri, Wahyuddin Wahyuddin, Andi Nur Aisyah, Amriani Sapra, Maulita Indrısarı, ve Lukman Muslimin. “THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 3 (Eylül 2024): 903-11. https://doi.org/10.33483/jfpau.1452000.
EndNote Murni HH, Khairi N, Fadri A, Wahyuddin W, Aisyah AN, Sapra A, Indrısarı M, Muslimin L (01 Eylül 2024) THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA. Journal of Faculty of Pharmacy of Ankara University 48 3 903–911.
IEEE H. H. Murni, “THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA”, Ankara Ecz. Fak. Derg., c. 48, sy. 3, ss. 903–911, 2024, doi: 10.33483/jfpau.1452000.
ISNAD Murni, Hendrawan Hasanuddin vd. “THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA”. Journal of Faculty of Pharmacy of Ankara University 48/3 (Eylül 2024), 903-911. https://doi.org/10.33483/jfpau.1452000.
JAMA Murni HH, Khairi N, Fadri A, Wahyuddin W, Aisyah AN, Sapra A, Indrısarı M, Muslimin L. THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA. Ankara Ecz. Fak. Derg. 2024;48:903–911.
MLA Murni, Hendrawan Hasanuddin vd. “THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 3, 2024, ss. 903-11, doi:10.33483/jfpau.1452000.
Vancouver Murni HH, Khairi N, Fadri A, Wahyuddin W, Aisyah AN, Sapra A, Indrısarı M, Muslimin L. THE EFFECT OF MATURITY ON PHYTOCHEMICAL CONSTITUENT, ANTIOXIDANT ACTIVITY, AND NUTRIENT COMPOSITION OF MUNTINGIA CALABURA FRUITS CULTIVATED IN INDONESIA. Ankara Ecz. Fak. Derg. 2024;48(3):903-11.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.