Derleme
BibTex RIS Kaynak Göster

SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY

Yıl 2025, Cilt: 49 Sayı: 3, 981 - 998, 19.09.2025
https://doi.org/10.33483/jfpau.1590697

Öz

Objective: The application of nanocomposites in biomedicine is a promising approach that scientists have discovered to eradicate infection-causing microorganisms properly and safely. Silver nanocomposites (AgNCs) can be recognized as hopeful antibacterial prospects that can fight both in vivo and in vitro infection-causing bacteria. The purpose of this review is to identify the variables that influence the antibacterial effect of AgNCs, given the pressing need for new, effective antibacterial agents.
Result and Discussion: In the literature, many reports indicate the capacity of AgNCs to combat both gram-positive and gram-negative bacteriomers, including those that are resistant to multiple drugs. This capacity is due to the multiple simultaneous modes of AgNCs action. This capacity also results in a synergistic impact on bacteria when mutually applied with natural or synthetic antibacterial medications. Because of their unique properties, AgNCs can be effectively used to manage or prevent infections in a variety of medical and healthcare products. The study focuses on the synthetic methodologies and antibacterial mechanisms of AgNCs. Furthermore, factors influencing the action of AgNCs against bacteriomers as well as the advantages of combining AgNCs with antibiotics to create novel antibacterial combinations were covered. The authors wanted to make it possible to reduce the dose required and prevent unfavorable off-target effects associated with both by providing access to the reviewed data.

Kaynakça

  • 1. Seil, J.T., Webster, T.J. (2012). Antimicrobial applications of nanotechnology: methods and literature. International Journal of Nanomedicine, 2767-81. [CrossRef]
  • 2. Yahya, M., Azba, S., Al-Hayali, M. (2021). Effect of antibiotic misuse on the emergence of microbial resistance among urologic patients. Iraqi Journal of Pharmacy, 8, 44-56. [CrossRef]
  • 3. Betts, J.W., Hornsey, M., La Ragione, R.M. (2018). Novel antibacterials: Alternatives to traditional antibiotics. Advances in Microbial Physiology, 123-69. [CrossRef]
  • 4. Abid, K.Y., Yahya, M.Q. (2023). Antimicrobial and anti-oxidant activities of essential oils derived from some citrus peel. Military Medicinal Science Letter, 92(1), 64-74. [CrossRef]
  • 5. Crisan, C.M., Mocan, T., Manolea, M., Lasca, L.I., Tăbăran, F.A., Mocan, L. (2021). Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences, 11(3),1-18. [CrossRef]
  • 6. Mamidi, N., Delgadillo, R.M., Sustaita, A.O., Lozano, K., Yallapu, M.M. (2025). Current nanocomposite advances for biomedical and environmental application diversity. Medicinal Research Reviews, 45(2), 576-628. [CrossRef]
  • 7. Xiang, Q.Q., Li, Q.Q., Wang, P., Yang, H.C., Fu, Z.H., Liang, X., Chen, L.Q. (2025). Metabolomics reveals the mechanism of persistent toxicity of AgNPs at environmentally relevant concentrations to Daphnia magna. Environmental Science: Nano. 12(1), 563-75. [CrossRef]
  • 8. Sapuan, S.M., Ilyas, R.A., Harussani, M.M. (2025). Composites, biocomposites, nanocomposites, and their hybrids. Advanced Composites, 19-64. [CrossRef]
  • 9. Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13). [CrossRef]
  • 10. Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., Xing, M.M.Q. (2014). Nanosilver particles in medical applications: Synthesis, performance, and toxicity. International Journal of Nanomedicine, 2399-407. [CrossRef]
  • 11. Miller, C.N., Newall, N., Kapp, S.E., Lewin, G., Karimi, L., Carville, K., Gliddon, T., Santamaria, N.M. (2010). A randomized‐controlled trial comparing cadexomer iodine and nanocrystalline silver on the healing of leg ulcers. Wound Repair Regen, 18(4), 359-67. [CrossRef]
  • 12. Ismail, R.A., Sulaiman, G.M., Mohsin, M.H., Saadoon, A.H. (2018). Preparation of silver iodide nanoparticles using laser ablation in liquid for antibacterial applications. IET Nanobiotechnology, 12(6), 781-6. [CrossRef]
  • 13. Tang, S., Zheng, J. (2018). Antibacterial activity of silver nanoparticles: Structural effects. Advanced Healthcare Materials, 7(13),1701503. [CrossRef]
  • 14. Shim, J., Mazumder, P., Kumar, M. (2018). Corn cob silica as an antibacterial support for silver nanoparticles: Efficacy on Escherichia coli and Listeria monocytogenes. Environmental Monitoring and Assessment, 190, 1-10. [CrossRef]
  • 15. Yin, L., Cheng, Y., Espinasse, B., Colman, B.P., Auffan, M., Wiesner, M., Rose, J., Liu, J., Bernhardt, E.S. (2011). More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environmental Science and Technology, 45(6), 2360-7. [CrossRef]
  • 16. Yahya, M.Q., Abid, K.Y. (2022). Evaluation of antimicrobial effects of citrus peel extracts and its silver nanoparticles against multiple pathogens. Military Medical Science Letters, 91(3), 244-55. [CrossRef]
  • 17. Rafi, A.A., Mahkam, M., Davaran, S., Hamishehkar, H. (2016). A smart pH-responsive nano-carrier as a drug delivery system: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): Preparation, characterization and in vitro release st. European Journal of Pharmaceutical Sciences, 93, 64-73. [CrossRef]
  • 18. Jabir, M.S., Hussien, A.A., Sulaiman, G.M., Yaseen, N.Y., Dewir, Y.H., Alwahibi, M.S., Soliman, D.A., Rizwana, H. (2021). Green synthesis of silver nanoparticles from Eriobotrya japonica extract: A promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 48-60. [CrossRef]
  • 19. Yaqoob, A.A., Umar, K., Ibrahim, M.N.M. (2020). Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications-A review. Applied Nanoscience, 10(5), 1369-78. [CrossRef]
  • 20. Zeki, N.M., Mustafa, Y.F. (2024). 6,7-Coumarin-heterocyclic hybrids: A comprehensive review of their natural sources, synthetic approaches, and bioactivity. Journal of Molecular Structure, 1303, 137601.
  • 21. Abebe Alamineh, E. (2018). Extraction of pectin from orange peels and characterizing its physical and chemical properties. American Journal of Applied Chemistry, 6(2), 51. [CrossRef]
  • 22. Hussain, I., Singh, N.B., Singh, A., Singh, H., Singh, S.C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38, 545-60. [CrossRef]
  • 23. Iacono, S.T., Jennings, A.R. (2019). Recent studies on fluorinated silica nanometer-sized particles. Nanomaterials, 9(5), 684. [CrossRef]
  • 24. Atia, Y.A., Bokov, D.O., Zinnatullovich, K.R., Kadhim, M.M., Suksatan, W., Abdelbasset, W.K., Hammoodi, H.A., Mustafa, Y.F., Cao, Y. (2022). The role of amino acid functionalization for improvement of adsorption Thioguanine anticancer drugs on the boron nitride nanotubes for drug delivery. Materials Chemistry and Physics, 278, 125664. [CrossRef]
  • 25. Tsuji, T., Iryo, K., Watanabe, N., Tsuji, M. (2002). Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Applied Surface Science, 202(1-2), 80-5. [CrossRef]
  • 26. Mustafa, Y.F., Zain, Al-Abdeen, S.H., Khalil, R.R., Mohammed, E.T. (2023). Novel functionalized phenyl acetate derivatives of benzo[e]bispyrone fused hybrids: Synthesis and biological activities. Results Chemistry, 5, 100942. [CrossRef]
  • 27. Jebir, R.M., Mustafa, Y.F. (2022). Novel coumarins isolated from the seeds of Citrullus lanatus as potential antimicrobial agents. Eurasian Chemical Communications, 4(8), 692-708.
  • 28. Ferdous, Z., Nemmar, A. (2020). Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21(7), 2375.
  • 29. Huang, H., Yang, Y. (2008). Preparation of silver nanoparticles in inorganic clay suspensions. Composites Sciences and Technology, 68(14), 2948-53. [CrossRef]
  • 30. Chen, S.F., Zhang, H. (2012). Aggregation kinetics of nanosilver in different water conditions. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(3), 35006. [CrossRef]
  • 31. Patil, R.S., Kokate, M.R., Jambhale, C.L., Pawar, S.M., Han, S.H., Kolekar, S.S. (2012). One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1),15013. [CrossRef]
  • 32. Guimarães, M.L., da Silva, F.A.G., da Costa, M.M., de Oliveira, H.P. (2020). Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Applied Nanoscienes, 10, 1073-81. [CrossRef]
  • 33. Vilchis-Nestor, A.R., Sánchez-Mendieta, V., Camacho-López, M.A., Gómez-Espinosa, R.M., Camacho-López, M.A., Arenas-Alatorre, J.A. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62(17-18), 3103-5. [CrossRef]
  • 34. Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 62(29), 4411-3. [CrossRef]
  • 35. Mustafa, Y.F. (2024). Harmful free radicals in aging: A narrative review of their detrimental effects on health. International Journal of Clinical Biochemical Researches, 39(2),154-67. [CrossRef]
  • 36. Lee, N.Y., Ko ,W.C., Hsueh, P.R. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers of Pharmacology, 10(October),1-10. [CrossRef]
  • 37. Jiang, M., Althomali, R.H., Ansari, S.A., Saleh, E.A.M., Gupta, J., Kambarov, K.D., Alsaab, H.O., Alwaily, E.R., Hussien, B.M., Mustafa, Y.F., Narmani, A., Farhood, B. (2023). Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. International Journal of Biological Macromolecules, 251,126390. [CrossRef]
  • 38. Jebir, M.R., Mustafa, Y.F. (2024). Kidney stones: natural remedies and lifestyle modifications to alleviate their burden. International Urology and Nephrology, 56(3),1025–33. [CrossRef]
  • 39. Crisan, C.M., Mocan, T., Manolea, M., Lasca, L.I., Tăbăran, F.A., Mocan, L. (2021). Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences, 11(3),1120. [CrossRef]
  • 40. Cheng, G., Dai, M., Ahmed, S., Hao, H., Wang, X., Yuan, Z. (2016). Antimicrobial drugs in fighting against antimicrobial resistance. Frontiers Microbiology,7, 470. [CrossRef]
  • 41. Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N.M., Thajuddin, N., Velusamy, P. (2012). Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids and Surfaces B: Biointerfaces, 96, 69-74. [CrossRef]
  • 42. Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., Upadhyay, S.N. (2016). Green synthesis of silver nanoparticles: A review. Green and Sustainable Chemistry. 6(1), 34-56.
  • 43. Zhang, M., Zhang, K., De Gusseme, B., Verstraete, W., Field, R. (2014). The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling, 30(3), 347–57. [CrossRef]
  • 44. Kaur, A., Preet, S., Kumar, V., Kumar, R., Kumar, R. (2019). Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces, 176, 62-9. [CrossRef]
  • 45. Surwade, P., Ghildyal, C., Weikel, C., Luxton, T., Peloquin, D., Fan, X., Shah, V. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). Journal of Antibiotics, 72(1), 50-3. [CrossRef]
  • 46. Eby, D.M., Schaeublin, N.M., Farrington, K.E., Hussain, S.M., Johnson, G.R. (2009). Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano, 3(4), 984-94. [CrossRef]
  • 47. Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-8. [CrossRef]
  • 48. Tripathi, N., Goshisht, M.K. (2022). Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Applied Bio Materials, 5(4),1391-463. [CrossRef]
  • 49. Yahya, M.Q., Abid, K.Y. (2022). Evaluation of antimicrobial effects of citrus peel extracts and its silver nanoparticles against multiple pathogens. Military Medical Science Letters, 91(3). [CrossRef]
  • 50. Zonooz, N.F., Salouti, M. (2011). Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Scientia Iranica, 18(6),1631-5. [CrossRef]
  • 51. Gurunathan, S. (2019). Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arabian Journal of Chemistry, 12(2),168-80. [CrossRef]
  • 52. Deepak, V., Umamaheshwaran, P.S., Guhan, K., Nanthini, R.A., Krithiga, B., Jaithoon, N.M.H., Gurunathan, S. (2011). Synthesis of gold and silver nanoparticles using purified URAK. Colloids and Surfaces B: Biointerfaces, 86(2), 353-8. [CrossRef]
  • 53. Juibari, M.M., Abbasalizadeh, S., Jouzani, G.S., Noruzi, M. (2011). Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Materials Letters, 65(6),1014-7. [CrossRef]
  • 54. Salomoni, R., Léo, P., Montemor, A.F., Rinaldi, B.G., Rodrigues, M.F.A. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 115-21. [CrossRef]
  • 55. Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B: Biointerfaces, 77(2), 257-62. [CrossRef]
  • 56. McShan, D., Zhang, Y., Deng, H., Ray, P.C., Yu, H. (2015). Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. Journal of Environmental Sciences and Health C., 33(3), 369-84. [CrossRef]
  • 57. Abootalebi, S.N., Mousavi, S.M., Hashemi, S.A., Shorafa, E., Omidifar, N., Gholami, A. (2021). Antibacterial effects of green-synthesized silver nanoparticles using Ferula asafoetida against Acinetobacter baumannii isolated from the hospital environment and assessment of their cytotoxicity on the human cell lines. Journal of Nanomaterials, 1-12. [CrossRef]
  • 58. Shahverdi, A.R., Minaeian, S., Shahverdi, H.R., Jamalifar, H., Nohi, A.A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry, 42(5), 919-23. [CrossRef]
  • 59. Bankar, A., Joshi, B., Kumar, A.R., Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368(1-3), 58-63. [CrossRef]
  • 60. Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang X, Wang, J., Liu, H., Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 3311-27. [CrossRef]
  • 61. Seong, M., Lee, D.G. (2017). Silver nanoparticles against Salmonella enterica serotype typhimurium: Role of inner membrane dysfunction. Current Microbiology, 74, 661-70. [CrossRef]
  • 62. Khalil, R.R., Mohammed, E.T., Mustafa, Y.F. (2021). Various promising biological effects of Cranberry extract: A review. Clinical Schizophrenia and Related Psychoses, 15(S6),1-9. [CrossRef]
  • 63. Gomaa, E.Z. (2017). Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for gram-positive and gram-negative bacteria. Journal of General and Applied Microbiology, 63(1), 36-43. [CrossRef]
  • 64. Wang, L., Hu, C., Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 1227-49. [CrossRef]
  • 65. Setia Budi, H., Javed Ansari, M., Abdalkareem Jasim, S., Abdelbasset, W.K., Bokov, D., Fakri Mustafa, Y., Najm, M.A.A., Kazemnejadi, M. (2022). Preparation of antibacterial Gel/PCL nanofibers reinforced by dicalcium phosphate-modified graphene oxide with control release of clindamycin for possible application in bone tissue engineering. Inorganic Chemistry Communications, 139, 109336. [CrossRef]
  • 66. Marambio-Jones, C., Hoek, E.M.V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12, 1531–51. [CrossRef]
  • 67. Kasim, S.M., Al-Dabbagh, B.M., Mustafa, Y.F. (2022). A review on the biological potentials of carbazole and its derived products. Eurasian Chemical Communications, 4(6), 495-512. [CrossRef]
  • 68. Ivask, A., ElBadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., Chang, C.H., Liu, R., Tolaymat, T., Telesca, D., Zink, J.I., Cohen, Y., Holden, P.A., Godwin, H.A. (2014). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 8(1), 374-86. [CrossRef]
  • 69. Brown, A.N., Smith, K., Samuels, T.A., Lu, J., Obare, S.O., Scott, M.E.. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied Environmental Microbiology, 78(8), 2768-74. [CrossRef]
  • 70. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
  • 71. Lu, Z., Rong, K., Li, J., Yang, H., Chen, R. (2013). Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. Journal of Materials Science: Materials in Medicine, 24,1465-71. [CrossRef]
  • 72. Agnihotri, S., Mukherji, S., Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974-83. [CrossRef]
  • 73. Guo, Z., Chen, Y., Wang, Y., Jiang, H., Wang, X. (2020). Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. Journal of Materials Chemistry B, 8(22), 4764-77. [CrossRef]
  • 74. Korshed, P., Li, L., Liu, Z., Mironov, A., Wang, T. (2019). Size‐dependent antibacterial activity for laser‐generated silver nanoparticles. Journal of Interdisciplinary Nanomedicine, 4(1), 24-33. [CrossRef]
  • 75. Raza, M.A., Kanwal, Z., Rauf, A., Sabri, A.N., Riaz, S., Naseem, S. (2016). Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6(4), 74. [CrossRef]
  • 76. Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., Sharghi, H. (2015). The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. Journal of Nanomaterials, 16(1), 53.[CrossRef]
  • 77. Sharma, V.K., Zboril, R. (2017). Silver nanoparticles in natural environment: Formation, fate, and toxicity. Bioactivity of Engineered Nanoparticles, 239-58. [CrossRef]
  • 78. Le Ouay, B., Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339-54. [CrossRef]
  • 79. Chen, J., Li, S., Luo, J., Wang, R., Ding, W. (2016). Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. Journal of Nanomaterials. [CrossRef]
  • 80. Prasher, P., Singh, M., Mudila, H. (2018). Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. Biotechnology, 8, 1-23. [CrossRef]
  • 81. Dakal, T.C., Kumar, A., Majumdar, R.S., Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers Microbiology, 7, 1831. [CrossRef]
  • 82. Cheeseman, S., Christofferson, A.J., Kariuki, R., Cozzolino, D., Daeneke, T., Crawford, R.J., Truong, V.K., Chapman, J., Elbourne, A. (2020). Antimicrobial metal nanomaterials: From passive to stimuli‐activated applications. Advanced Science, 7(10),1902913. [CrossRef]
  • 83. Kaweeteerawat, C., Na Ubol, P., Sangmuang, S., Aueviriyavit, S., Maniratanachote, R. (2017). Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. Journal of Toxicology and Environmental Health, Part A 80(23-24),1276-89. [CrossRef]
  • 84. Kędziora, A., Wernecki, M., Korzekwa, K., Speruda, M., Gerasymchuk, Y., Łukowiak, A., Ploskonska, G.B. (2019). Consequences of long-term bacteria’s exposure to silver nanoformulations with different physicochemical properties. International Journal of Nanomedicine, 199-213. [CrossRef]
  • 85. Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., Dycka, F., Sebela, M., Prucek, R., Tomanec, O., Zboril, R. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 13(1), 65-71. [CrossRef]
  • 86. Graves, J.L., Tajkarimi, M., Cunningham, Q., Campbell, A., Nonga H., Harrison, S.H., Barrick, J.E. (2015). Rapid evolution of silver nanoparticle resistance in Escherichia coli. Frontiers in Genetics, 6, 42. [CrossRef]
  • 87. Khatoon, N., Alam, H., Khan, A., Raza, K., Sardar, M. (2019). Ampicillin silver nanoformulations against multidrug resistant bacteria. Scientific Reports, 9(1), 6848. [CrossRef]
  • 88. Ashmore, D., Chaudhari, A., Barlow, B., Barlow, B., Harper, T., Vig, K., Miller, M., Singh, S., Nelson, E., Pillai, S. (2018). Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Revista do Instituto de Medicina Tropical de Sao Paulo, 60, e18. [CrossRef]
  • 89. Jasim, S.F., Mustafa, Y.F. (2022). Synthesis and antidiabetic assessment of new coumarin-disubstituted benzene conjugates: An in silico-in vitro study. Journal of Medicinal and Chemical Sciences, 5(6), 887-99. [CrossRef]
  • 90. Vazquez-Muñoz, R., Meza-Villezcas, A., Fournier, P.G.J., Soria-Castro, E., Juarez-Moreno, K., Gallego-Hernández, A.L., Bogdanchikova, N., Duhalt, R.V., Saquero, A.H. (2019). Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PlOS One, 14(11), e0224904. [CrossRef]
  • 91. Alizadeh, A., Salouti, M., Alizadeh, H., Kazemizadeh, A.R., Safari, A.A., Mahmazi, S. (2017). Enhanced antibacterial effect of azlocillin in conjugation with silver nanoparticles against Pseudomonas aeruginosa. IET Nanobiotechnology, 11(8), 942-7. [CrossRef]
  • 92. Ipe, D.S., Kumar, P.T.S., Love, R.M., Hamlet, S.M. (2020). Silver nanoparticles at biocompatible dosage synergistically increases bacterial susceptibility to antibiotics. Frontiers in Microbiology, 11, 1074. [CrossRef]
  • 93. Kaur, A., Kumar, R. (2019). Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Advances, 9(2), 1095-105. [CrossRef]
  • 94. Rezazadeh, N.H., Buazar, F., Matroodi, S. (2020). Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Scientific Reports, 10(1), 19615. [CrossRef]
  • 95. Rolband, L., Godakhindi, V., Vivero-Escoto, J.L., Afonin, K.A. (2023). Demonstrating the synthesis and antibacterial properties of nanostructured silver. Journal of Chemical Education, 100(9), 3547-55. [CrossRef]
  • 96. Jangid, H., Singh, S., Kashyap, P., Singh, A., Kumar, G. (2024). Advancing biomedical applications: An in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Frontiers in Pharmacology, 2024, 15, 1438227. [CrossRef]
  • 97. Wāng, Y., Han, Y., Xu, D.X. (2024). Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. ESE, 19, 100325. [CrossRef]

GÜMÜŞ NANOKOMPOZİTLER: ANTİBAKTERİYEL TERAPİDEKİ OYUN DEĞİŞTİRİCİ ROLLERİNE BİR BAKIŞ

Yıl 2025, Cilt: 49 Sayı: 3, 981 - 998, 19.09.2025
https://doi.org/10.33483/jfpau.1590697

Öz

Amaç: Nanokompozitlerin biyomedikal alanda uygulanması, bilim insanlarının enfeksiyona neden olan mikroorganizmaları uygun ve güvenli bir şekilde ortadan kaldırmak için keşfettiği umut verici bir yaklaşımdır. Gümüş nanokompozitler (AgNC'ler), hem in vivo hem de in vitro enfeksiyona neden olan bakterilerle savaşabilen umut verici antibakteriyel olasılıklar olarak kabul edilebilir. Bu incelemenin amacı, yeni ve etkili antibakteriyel ajanlara olan acil ihtiyaç göz önüne alındığında, AgNC'lerin antibakteriyel etkisini etkileyen değişkenleri belirlemektir.
Sonuç ve Tartışma: Literatürde, birçok rapor, AgNC'lerin çoklu ilaçlara dirençli olanlar da dahil olmak üzere hem gram pozitif hem de gram negatif bakteriyomerlerle savaşma kapasitesini göstermektedir. Bu kapasite, AgNC'lerin birden fazla eşzamanlı etki modundan kaynaklanmaktadır. Bu kapasite, doğal veya sentetik antibakteriyel ilaçlarla birlikte uygulandığında bakteriler üzerinde sinerjik bir etkiyle de sonuçlanmaktadır. Benzersiz özellikleri nedeniyle, AgNC'ler çeşitli tıbbi ve sağlık ürünlerindeki enfeksiyonları yönetmek veya önlemek için etkili bir şekilde kullanılabilir. Çalışma, AgNC'lerin sentetik metodolojilerine ve antibakteriyel mekanizmalarına odaklanmaktadır. Ayrıca, AgNC'lerin bakteriyomerlere karşı etkisini etkileyen faktörler ve AgNC'leri antibiyotiklerle birleştirerek yeni antibakteriyel kombinasyonlar oluşturmanın avantajları ele alınmıştır. Yazarlar, incelenen verilere erişim sağlayarak gereken dozu azaltmayı ve her ikisiyle ilişkili olumsuz hedef dışı etkileri önlemeyi mümkün kılmak istemişlerdir.

Kaynakça

  • 1. Seil, J.T., Webster, T.J. (2012). Antimicrobial applications of nanotechnology: methods and literature. International Journal of Nanomedicine, 2767-81. [CrossRef]
  • 2. Yahya, M., Azba, S., Al-Hayali, M. (2021). Effect of antibiotic misuse on the emergence of microbial resistance among urologic patients. Iraqi Journal of Pharmacy, 8, 44-56. [CrossRef]
  • 3. Betts, J.W., Hornsey, M., La Ragione, R.M. (2018). Novel antibacterials: Alternatives to traditional antibiotics. Advances in Microbial Physiology, 123-69. [CrossRef]
  • 4. Abid, K.Y., Yahya, M.Q. (2023). Antimicrobial and anti-oxidant activities of essential oils derived from some citrus peel. Military Medicinal Science Letter, 92(1), 64-74. [CrossRef]
  • 5. Crisan, C.M., Mocan, T., Manolea, M., Lasca, L.I., Tăbăran, F.A., Mocan, L. (2021). Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences, 11(3),1-18. [CrossRef]
  • 6. Mamidi, N., Delgadillo, R.M., Sustaita, A.O., Lozano, K., Yallapu, M.M. (2025). Current nanocomposite advances for biomedical and environmental application diversity. Medicinal Research Reviews, 45(2), 576-628. [CrossRef]
  • 7. Xiang, Q.Q., Li, Q.Q., Wang, P., Yang, H.C., Fu, Z.H., Liang, X., Chen, L.Q. (2025). Metabolomics reveals the mechanism of persistent toxicity of AgNPs at environmentally relevant concentrations to Daphnia magna. Environmental Science: Nano. 12(1), 563-75. [CrossRef]
  • 8. Sapuan, S.M., Ilyas, R.A., Harussani, M.M. (2025). Composites, biocomposites, nanocomposites, and their hybrids. Advanced Composites, 19-64. [CrossRef]
  • 9. Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13). [CrossRef]
  • 10. Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., Xing, M.M.Q. (2014). Nanosilver particles in medical applications: Synthesis, performance, and toxicity. International Journal of Nanomedicine, 2399-407. [CrossRef]
  • 11. Miller, C.N., Newall, N., Kapp, S.E., Lewin, G., Karimi, L., Carville, K., Gliddon, T., Santamaria, N.M. (2010). A randomized‐controlled trial comparing cadexomer iodine and nanocrystalline silver on the healing of leg ulcers. Wound Repair Regen, 18(4), 359-67. [CrossRef]
  • 12. Ismail, R.A., Sulaiman, G.M., Mohsin, M.H., Saadoon, A.H. (2018). Preparation of silver iodide nanoparticles using laser ablation in liquid for antibacterial applications. IET Nanobiotechnology, 12(6), 781-6. [CrossRef]
  • 13. Tang, S., Zheng, J. (2018). Antibacterial activity of silver nanoparticles: Structural effects. Advanced Healthcare Materials, 7(13),1701503. [CrossRef]
  • 14. Shim, J., Mazumder, P., Kumar, M. (2018). Corn cob silica as an antibacterial support for silver nanoparticles: Efficacy on Escherichia coli and Listeria monocytogenes. Environmental Monitoring and Assessment, 190, 1-10. [CrossRef]
  • 15. Yin, L., Cheng, Y., Espinasse, B., Colman, B.P., Auffan, M., Wiesner, M., Rose, J., Liu, J., Bernhardt, E.S. (2011). More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environmental Science and Technology, 45(6), 2360-7. [CrossRef]
  • 16. Yahya, M.Q., Abid, K.Y. (2022). Evaluation of antimicrobial effects of citrus peel extracts and its silver nanoparticles against multiple pathogens. Military Medical Science Letters, 91(3), 244-55. [CrossRef]
  • 17. Rafi, A.A., Mahkam, M., Davaran, S., Hamishehkar, H. (2016). A smart pH-responsive nano-carrier as a drug delivery system: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): Preparation, characterization and in vitro release st. European Journal of Pharmaceutical Sciences, 93, 64-73. [CrossRef]
  • 18. Jabir, M.S., Hussien, A.A., Sulaiman, G.M., Yaseen, N.Y., Dewir, Y.H., Alwahibi, M.S., Soliman, D.A., Rizwana, H. (2021). Green synthesis of silver nanoparticles from Eriobotrya japonica extract: A promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 48-60. [CrossRef]
  • 19. Yaqoob, A.A., Umar, K., Ibrahim, M.N.M. (2020). Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications-A review. Applied Nanoscience, 10(5), 1369-78. [CrossRef]
  • 20. Zeki, N.M., Mustafa, Y.F. (2024). 6,7-Coumarin-heterocyclic hybrids: A comprehensive review of their natural sources, synthetic approaches, and bioactivity. Journal of Molecular Structure, 1303, 137601.
  • 21. Abebe Alamineh, E. (2018). Extraction of pectin from orange peels and characterizing its physical and chemical properties. American Journal of Applied Chemistry, 6(2), 51. [CrossRef]
  • 22. Hussain, I., Singh, N.B., Singh, A., Singh, H., Singh, S.C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38, 545-60. [CrossRef]
  • 23. Iacono, S.T., Jennings, A.R. (2019). Recent studies on fluorinated silica nanometer-sized particles. Nanomaterials, 9(5), 684. [CrossRef]
  • 24. Atia, Y.A., Bokov, D.O., Zinnatullovich, K.R., Kadhim, M.M., Suksatan, W., Abdelbasset, W.K., Hammoodi, H.A., Mustafa, Y.F., Cao, Y. (2022). The role of amino acid functionalization for improvement of adsorption Thioguanine anticancer drugs on the boron nitride nanotubes for drug delivery. Materials Chemistry and Physics, 278, 125664. [CrossRef]
  • 25. Tsuji, T., Iryo, K., Watanabe, N., Tsuji, M. (2002). Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Applied Surface Science, 202(1-2), 80-5. [CrossRef]
  • 26. Mustafa, Y.F., Zain, Al-Abdeen, S.H., Khalil, R.R., Mohammed, E.T. (2023). Novel functionalized phenyl acetate derivatives of benzo[e]bispyrone fused hybrids: Synthesis and biological activities. Results Chemistry, 5, 100942. [CrossRef]
  • 27. Jebir, R.M., Mustafa, Y.F. (2022). Novel coumarins isolated from the seeds of Citrullus lanatus as potential antimicrobial agents. Eurasian Chemical Communications, 4(8), 692-708.
  • 28. Ferdous, Z., Nemmar, A. (2020). Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21(7), 2375.
  • 29. Huang, H., Yang, Y. (2008). Preparation of silver nanoparticles in inorganic clay suspensions. Composites Sciences and Technology, 68(14), 2948-53. [CrossRef]
  • 30. Chen, S.F., Zhang, H. (2012). Aggregation kinetics of nanosilver in different water conditions. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(3), 35006. [CrossRef]
  • 31. Patil, R.S., Kokate, M.R., Jambhale, C.L., Pawar, S.M., Han, S.H., Kolekar, S.S. (2012). One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1),15013. [CrossRef]
  • 32. Guimarães, M.L., da Silva, F.A.G., da Costa, M.M., de Oliveira, H.P. (2020). Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Applied Nanoscienes, 10, 1073-81. [CrossRef]
  • 33. Vilchis-Nestor, A.R., Sánchez-Mendieta, V., Camacho-López, M.A., Gómez-Espinosa, R.M., Camacho-López, M.A., Arenas-Alatorre, J.A. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62(17-18), 3103-5. [CrossRef]
  • 34. Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 62(29), 4411-3. [CrossRef]
  • 35. Mustafa, Y.F. (2024). Harmful free radicals in aging: A narrative review of their detrimental effects on health. International Journal of Clinical Biochemical Researches, 39(2),154-67. [CrossRef]
  • 36. Lee, N.Y., Ko ,W.C., Hsueh, P.R. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers of Pharmacology, 10(October),1-10. [CrossRef]
  • 37. Jiang, M., Althomali, R.H., Ansari, S.A., Saleh, E.A.M., Gupta, J., Kambarov, K.D., Alsaab, H.O., Alwaily, E.R., Hussien, B.M., Mustafa, Y.F., Narmani, A., Farhood, B. (2023). Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. International Journal of Biological Macromolecules, 251,126390. [CrossRef]
  • 38. Jebir, M.R., Mustafa, Y.F. (2024). Kidney stones: natural remedies and lifestyle modifications to alleviate their burden. International Urology and Nephrology, 56(3),1025–33. [CrossRef]
  • 39. Crisan, C.M., Mocan, T., Manolea, M., Lasca, L.I., Tăbăran, F.A., Mocan, L. (2021). Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences, 11(3),1120. [CrossRef]
  • 40. Cheng, G., Dai, M., Ahmed, S., Hao, H., Wang, X., Yuan, Z. (2016). Antimicrobial drugs in fighting against antimicrobial resistance. Frontiers Microbiology,7, 470. [CrossRef]
  • 41. Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N.M., Thajuddin, N., Velusamy, P. (2012). Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids and Surfaces B: Biointerfaces, 96, 69-74. [CrossRef]
  • 42. Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., Upadhyay, S.N. (2016). Green synthesis of silver nanoparticles: A review. Green and Sustainable Chemistry. 6(1), 34-56.
  • 43. Zhang, M., Zhang, K., De Gusseme, B., Verstraete, W., Field, R. (2014). The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling, 30(3), 347–57. [CrossRef]
  • 44. Kaur, A., Preet, S., Kumar, V., Kumar, R., Kumar, R. (2019). Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces, 176, 62-9. [CrossRef]
  • 45. Surwade, P., Ghildyal, C., Weikel, C., Luxton, T., Peloquin, D., Fan, X., Shah, V. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). Journal of Antibiotics, 72(1), 50-3. [CrossRef]
  • 46. Eby, D.M., Schaeublin, N.M., Farrington, K.E., Hussain, S.M., Johnson, G.R. (2009). Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano, 3(4), 984-94. [CrossRef]
  • 47. Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-8. [CrossRef]
  • 48. Tripathi, N., Goshisht, M.K. (2022). Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Applied Bio Materials, 5(4),1391-463. [CrossRef]
  • 49. Yahya, M.Q., Abid, K.Y. (2022). Evaluation of antimicrobial effects of citrus peel extracts and its silver nanoparticles against multiple pathogens. Military Medical Science Letters, 91(3). [CrossRef]
  • 50. Zonooz, N.F., Salouti, M. (2011). Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Scientia Iranica, 18(6),1631-5. [CrossRef]
  • 51. Gurunathan, S. (2019). Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arabian Journal of Chemistry, 12(2),168-80. [CrossRef]
  • 52. Deepak, V., Umamaheshwaran, P.S., Guhan, K., Nanthini, R.A., Krithiga, B., Jaithoon, N.M.H., Gurunathan, S. (2011). Synthesis of gold and silver nanoparticles using purified URAK. Colloids and Surfaces B: Biointerfaces, 86(2), 353-8. [CrossRef]
  • 53. Juibari, M.M., Abbasalizadeh, S., Jouzani, G.S., Noruzi, M. (2011). Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Materials Letters, 65(6),1014-7. [CrossRef]
  • 54. Salomoni, R., Léo, P., Montemor, A.F., Rinaldi, B.G., Rodrigues, M.F.A. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 115-21. [CrossRef]
  • 55. Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B: Biointerfaces, 77(2), 257-62. [CrossRef]
  • 56. McShan, D., Zhang, Y., Deng, H., Ray, P.C., Yu, H. (2015). Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. Journal of Environmental Sciences and Health C., 33(3), 369-84. [CrossRef]
  • 57. Abootalebi, S.N., Mousavi, S.M., Hashemi, S.A., Shorafa, E., Omidifar, N., Gholami, A. (2021). Antibacterial effects of green-synthesized silver nanoparticles using Ferula asafoetida against Acinetobacter baumannii isolated from the hospital environment and assessment of their cytotoxicity on the human cell lines. Journal of Nanomaterials, 1-12. [CrossRef]
  • 58. Shahverdi, A.R., Minaeian, S., Shahverdi, H.R., Jamalifar, H., Nohi, A.A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry, 42(5), 919-23. [CrossRef]
  • 59. Bankar, A., Joshi, B., Kumar, A.R., Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368(1-3), 58-63. [CrossRef]
  • 60. Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang X, Wang, J., Liu, H., Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 3311-27. [CrossRef]
  • 61. Seong, M., Lee, D.G. (2017). Silver nanoparticles against Salmonella enterica serotype typhimurium: Role of inner membrane dysfunction. Current Microbiology, 74, 661-70. [CrossRef]
  • 62. Khalil, R.R., Mohammed, E.T., Mustafa, Y.F. (2021). Various promising biological effects of Cranberry extract: A review. Clinical Schizophrenia and Related Psychoses, 15(S6),1-9. [CrossRef]
  • 63. Gomaa, E.Z. (2017). Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for gram-positive and gram-negative bacteria. Journal of General and Applied Microbiology, 63(1), 36-43. [CrossRef]
  • 64. Wang, L., Hu, C., Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 1227-49. [CrossRef]
  • 65. Setia Budi, H., Javed Ansari, M., Abdalkareem Jasim, S., Abdelbasset, W.K., Bokov, D., Fakri Mustafa, Y., Najm, M.A.A., Kazemnejadi, M. (2022). Preparation of antibacterial Gel/PCL nanofibers reinforced by dicalcium phosphate-modified graphene oxide with control release of clindamycin for possible application in bone tissue engineering. Inorganic Chemistry Communications, 139, 109336. [CrossRef]
  • 66. Marambio-Jones, C., Hoek, E.M.V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12, 1531–51. [CrossRef]
  • 67. Kasim, S.M., Al-Dabbagh, B.M., Mustafa, Y.F. (2022). A review on the biological potentials of carbazole and its derived products. Eurasian Chemical Communications, 4(6), 495-512. [CrossRef]
  • 68. Ivask, A., ElBadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., Chang, C.H., Liu, R., Tolaymat, T., Telesca, D., Zink, J.I., Cohen, Y., Holden, P.A., Godwin, H.A. (2014). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 8(1), 374-86. [CrossRef]
  • 69. Brown, A.N., Smith, K., Samuels, T.A., Lu, J., Obare, S.O., Scott, M.E.. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied Environmental Microbiology, 78(8), 2768-74. [CrossRef]
  • 70. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
  • 71. Lu, Z., Rong, K., Li, J., Yang, H., Chen, R. (2013). Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. Journal of Materials Science: Materials in Medicine, 24,1465-71. [CrossRef]
  • 72. Agnihotri, S., Mukherji, S., Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974-83. [CrossRef]
  • 73. Guo, Z., Chen, Y., Wang, Y., Jiang, H., Wang, X. (2020). Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. Journal of Materials Chemistry B, 8(22), 4764-77. [CrossRef]
  • 74. Korshed, P., Li, L., Liu, Z., Mironov, A., Wang, T. (2019). Size‐dependent antibacterial activity for laser‐generated silver nanoparticles. Journal of Interdisciplinary Nanomedicine, 4(1), 24-33. [CrossRef]
  • 75. Raza, M.A., Kanwal, Z., Rauf, A., Sabri, A.N., Riaz, S., Naseem, S. (2016). Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6(4), 74. [CrossRef]
  • 76. Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., Sharghi, H. (2015). The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. Journal of Nanomaterials, 16(1), 53.[CrossRef]
  • 77. Sharma, V.K., Zboril, R. (2017). Silver nanoparticles in natural environment: Formation, fate, and toxicity. Bioactivity of Engineered Nanoparticles, 239-58. [CrossRef]
  • 78. Le Ouay, B., Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339-54. [CrossRef]
  • 79. Chen, J., Li, S., Luo, J., Wang, R., Ding, W. (2016). Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. Journal of Nanomaterials. [CrossRef]
  • 80. Prasher, P., Singh, M., Mudila, H. (2018). Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. Biotechnology, 8, 1-23. [CrossRef]
  • 81. Dakal, T.C., Kumar, A., Majumdar, R.S., Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers Microbiology, 7, 1831. [CrossRef]
  • 82. Cheeseman, S., Christofferson, A.J., Kariuki, R., Cozzolino, D., Daeneke, T., Crawford, R.J., Truong, V.K., Chapman, J., Elbourne, A. (2020). Antimicrobial metal nanomaterials: From passive to stimuli‐activated applications. Advanced Science, 7(10),1902913. [CrossRef]
  • 83. Kaweeteerawat, C., Na Ubol, P., Sangmuang, S., Aueviriyavit, S., Maniratanachote, R. (2017). Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. Journal of Toxicology and Environmental Health, Part A 80(23-24),1276-89. [CrossRef]
  • 84. Kędziora, A., Wernecki, M., Korzekwa, K., Speruda, M., Gerasymchuk, Y., Łukowiak, A., Ploskonska, G.B. (2019). Consequences of long-term bacteria’s exposure to silver nanoformulations with different physicochemical properties. International Journal of Nanomedicine, 199-213. [CrossRef]
  • 85. Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., Dycka, F., Sebela, M., Prucek, R., Tomanec, O., Zboril, R. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 13(1), 65-71. [CrossRef]
  • 86. Graves, J.L., Tajkarimi, M., Cunningham, Q., Campbell, A., Nonga H., Harrison, S.H., Barrick, J.E. (2015). Rapid evolution of silver nanoparticle resistance in Escherichia coli. Frontiers in Genetics, 6, 42. [CrossRef]
  • 87. Khatoon, N., Alam, H., Khan, A., Raza, K., Sardar, M. (2019). Ampicillin silver nanoformulations against multidrug resistant bacteria. Scientific Reports, 9(1), 6848. [CrossRef]
  • 88. Ashmore, D., Chaudhari, A., Barlow, B., Barlow, B., Harper, T., Vig, K., Miller, M., Singh, S., Nelson, E., Pillai, S. (2018). Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Revista do Instituto de Medicina Tropical de Sao Paulo, 60, e18. [CrossRef]
  • 89. Jasim, S.F., Mustafa, Y.F. (2022). Synthesis and antidiabetic assessment of new coumarin-disubstituted benzene conjugates: An in silico-in vitro study. Journal of Medicinal and Chemical Sciences, 5(6), 887-99. [CrossRef]
  • 90. Vazquez-Muñoz, R., Meza-Villezcas, A., Fournier, P.G.J., Soria-Castro, E., Juarez-Moreno, K., Gallego-Hernández, A.L., Bogdanchikova, N., Duhalt, R.V., Saquero, A.H. (2019). Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PlOS One, 14(11), e0224904. [CrossRef]
  • 91. Alizadeh, A., Salouti, M., Alizadeh, H., Kazemizadeh, A.R., Safari, A.A., Mahmazi, S. (2017). Enhanced antibacterial effect of azlocillin in conjugation with silver nanoparticles against Pseudomonas aeruginosa. IET Nanobiotechnology, 11(8), 942-7. [CrossRef]
  • 92. Ipe, D.S., Kumar, P.T.S., Love, R.M., Hamlet, S.M. (2020). Silver nanoparticles at biocompatible dosage synergistically increases bacterial susceptibility to antibiotics. Frontiers in Microbiology, 11, 1074. [CrossRef]
  • 93. Kaur, A., Kumar, R. (2019). Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Advances, 9(2), 1095-105. [CrossRef]
  • 94. Rezazadeh, N.H., Buazar, F., Matroodi, S. (2020). Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Scientific Reports, 10(1), 19615. [CrossRef]
  • 95. Rolband, L., Godakhindi, V., Vivero-Escoto, J.L., Afonin, K.A. (2023). Demonstrating the synthesis and antibacterial properties of nanostructured silver. Journal of Chemical Education, 100(9), 3547-55. [CrossRef]
  • 96. Jangid, H., Singh, S., Kashyap, P., Singh, A., Kumar, G. (2024). Advancing biomedical applications: An in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Frontiers in Pharmacology, 2024, 15, 1438227. [CrossRef]
  • 97. Wāng, Y., Han, Y., Xu, D.X. (2024). Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. ESE, 19, 100325. [CrossRef]
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Mikrobiyoloji, Tıbbi Farmakoloji
Bölüm Derleme
Yazarlar

Maimonah Q. Yahya 0000-0002-3571-9715

Raghad Riyadh Khalil 0000-0001-7682-9278

Eman Tareq Mohammed 0000-0002-2350-2164

Erken Görünüm Tarihi 3 Eylül 2025
Yayımlanma Tarihi 19 Eylül 2025
Gönderilme Tarihi 24 Kasım 2024
Kabul Tarihi 22 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 3

Kaynak Göster

APA Yahya, M. Q., Khalil, R. R., & Mohammed, E. T. (2025). SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY. Journal of Faculty of Pharmacy of Ankara University, 49(3), 981-998. https://doi.org/10.33483/jfpau.1590697
AMA Yahya MQ, Khalil RR, Mohammed ET. SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY. Ankara Ecz. Fak. Derg. Eylül 2025;49(3):981-998. doi:10.33483/jfpau.1590697
Chicago Yahya, Maimonah Q., Raghad Riyadh Khalil, ve Eman Tareq Mohammed. “SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 3 (Eylül 2025): 981-98. https://doi.org/10.33483/jfpau.1590697.
EndNote Yahya MQ, Khalil RR, Mohammed ET (01 Eylül 2025) SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY. Journal of Faculty of Pharmacy of Ankara University 49 3 981–998.
IEEE M. Q. Yahya, R. R. Khalil, ve E. T. Mohammed, “SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY”, Ankara Ecz. Fak. Derg., c. 49, sy. 3, ss. 981–998, 2025, doi: 10.33483/jfpau.1590697.
ISNAD Yahya, Maimonah Q. vd. “SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY”. Journal of Faculty of Pharmacy of Ankara University 49/3 (Eylül2025), 981-998. https://doi.org/10.33483/jfpau.1590697.
JAMA Yahya MQ, Khalil RR, Mohammed ET. SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY. Ankara Ecz. Fak. Derg. 2025;49:981–998.
MLA Yahya, Maimonah Q. vd. “SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 3, 2025, ss. 981-98, doi:10.33483/jfpau.1590697.
Vancouver Yahya MQ, Khalil RR, Mohammed ET. SILVER NANOCOMPOSITES: A GLIMPSE INTO THEIR GAME-CHANGING ROLES IN ANTIBACTERIAL THERAPY. Ankara Ecz. Fak. Derg. 2025;49(3):981-98.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.