Araştırma Makalesi
BibTex RIS Kaynak Göster

PRUNUS CERASUS L. YAPRAK EKSTRAKTINI KULLANARAK ALTIN NANOPARTİKÜLLERİNİN YEŞİL SENTEZİ VE KARACİĞER KANSERİ HÜCRE HATTI ÜZERİNDE ANTİPROLİFERATİF ETKİLERİNİN ARAŞTIRILMASI

Yıl 2025, Cilt: 49 Sayı: 3, 870 - 877, 19.09.2025
https://doi.org/10.33483/jfpau.1652814

Öz

Amaç: Altın nanopartiküller (AuNP'ler), ilaç dağıtımı, biyosensör ve fototermal terapi gibi nanoteknoloji uygulamalarında değerli olmalarını sağlayan benzersiz kimyasal, fiziksel ve biyolojik özelliklere sahiptir. Bu çalışma, yeşil indirgeyici ve stabilize edici ajan olarak Prunus cerasus (P. cerasus) yaprak özütü kullanılarak AuNP'leri sentezlemeyi ve yapısal ve biyolojik özelliklerini değerlendirmeyi amaçlamaktadır.
Gereç ve Yöntem: AuNP'ler, çevre dostu koşullar altında P cerasus yaprak özütü kullanılarak sentezlendi. Elde edilen nanopartiküller, yapısal, morfolojik ve kararlılık özelliklerini değerlendirmek için X-ışını kırınımı (XRD), Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), transmisyon elektron mikroskobu (TEM), UV-Vis spektroskopisi ve zeta potansiyel analizi kullanılarak karakterize edildi.
Sonuç ve Tartışma: TEM analizi, sentezlenen AuNP'lerin ağırlıklı olarak küresel olduğunu ve ortalama boyutunun 33±13 nm olduğunu doğruladı. XRD sonuçları yüz merkezli kübik kafes yapıda olduğunu kanıtladı. Ayrıca sentezlenen AuNP'lerin yüksek stabiliteye sahip olduğu zeta potansiyel analizi ile belirlenmiştir. Biyolojik değerlendirmeler AuNP'lerin seçici sitotoksik etkiler sergilediğini, P. cerasus yaprak özütüne kıyasla karaciğer kanseri (HepG2) hücrelerine karşı yaklaşık üç kat daha yüksek antiproliferatif aktivite gösterdiğini gösterdi. Bu bulgular P. cerasus özütü aracılı AuNP'lerin kanser tedavisi için potansiyelini vurgulayarak biyomedikal nanoteknolojideki uygulamalarını desteklemektedir.

Kaynakça

  • 1. Mitra, A.K., Agrahari, V., Mandal, A., Cholkar K., Natarajan, C., Shah S., Joseph, M., Trinh H.M., Vaishya R., Yang, X., Hao, Y., Khurana V., Pal, D. (2015). Novel delivery approaches for cancer therapeutics. Journal of Controlled Release, 219, 248-268. [CrossRef]
  • 2. Siddique, S., Chow, J.C.L. (2020). Gold nanoparticles for drug delivery and cancer therapy. Applied Sciences, 10(11), 3824. [CrossRef]
  • 3. Vines, J.B., Yoon, J.H., Ryu, N.E., Lim, D.J., Park H. (2019). Gold nanoparticles for photothermal cancer therapy. Frontiers in Chemistry, 7,167. [CrossRef]
  • 4. Lucky, S.S., Soo, K.C., Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical Reviews, 115(4), 1990-2042. [CrossRef]
  • 5. Kong, F.Y., Zhang, J.W., Li, R.F., Wang, Z.X., Wang, W.J., Wang, W. (2017). Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 22(9), 1445. [CrossRef]
  • 6. Mieszawska, A.J., Mulder, W.J.M., Fayad, Z.A., Cormode, D.P. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics, 10(3), 831-847. [CrossRef]
  • 7. Mert Sivri, F., Akkoc, S., Önem, E., Uysal, E. (2024). Biosynthesis of Ag nanoparticles using Laurus nobilis leaf extract and biomedical applications. Inorganic and Nano-Metal Chemistry,1-8. [CrossRef]
  • 8. Kumar, J.A., Krithiga, T., Manigandan, S., Sathish, S., Renita, A.A., Prakash, P., Naveen Prasad B.S., Praveen Kumar, T.R., Rajasimman, M., Hosseini-Bandegharaei, A., Prabu, D., Crispin, S. (2021). A focus to green synthesis of metal/metal-based oxide nanoparticles: Various mechanisms and applications towards ecological approach. Journal of Cleaner Production, 324, 129198. [CrossRef]
  • 9. Adeyemi, J.O., Oriola, A.O., Onwudiwe, D.C., Oyedeji, A.O. (2022). Plant extracts mediated metal-based nanoparticles: Synthesis and biological applications. Biomolecules, 12(5), 627. [CrossRef]
  • 10. Song, J.Y., Jang, H.K., Kim, B.S. (2009). Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochemistry, 44(10), 1133-1138. [CrossRef]
  • 11. Ankamwar, B. (2010). Biosynthesis of gold nanoparticles (green‐gold) using leaf extract of Terminalia catappa. Journal of Chemistry, 7(4), 1334-1339. [CrossRef]
  • 12. Zhan, G., Huang, J., Lin, L., Lin, W., Emmanuel, K., Li, Q. (2011). Synthesis of gold nanoparticles by Cacumen platycladi leaf extract and its simulated solution: Toward the plant-mediated biosynthetic mechanism. Journal of Nanoparticle Research, 13, 4957-4968. [CrossRef]
  • 13. Tamuly, C., Hazarika, M., Bordoloi, M. (2013). Biosynthesis of Au nanoparticles by Gymnocladus assamicus and its catalytic activity. Materials Letters, 108, 276-279. [CrossRef]
  • 14. Valsalam, S., Agastian, P., Esmail, G.A., Ghilan, A.K.M., Al-Dhabi, N.A., Arasu, M.V. (2019). Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. Journal of Photochemistry and Photobiology B: Biology, 201, 111670. [CrossRef]
  • 15. Dauthal, P., Mukhopadhyay, M. (2012). Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Industrial & Engineering Chemistry Research, 51(40), 13014-13020. [CrossRef]
  • 16. Shirzadi-Ahodashti, M., Mortazavi-Derazkola, S., Ebrahimzadeh, M.A. (2020). Biosynthesis of noble metal nanoparticles using crataegus monogyna leaf extract (CML@ X-NPs, X= Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines. Surfaces and Interfaces, 2, 100697. [CrossRef]
  • 17. Bulut, S., Özüpek, B., Pekacar, S., Özdemir, A., Deliorman, O.D. (2024). Evaluation of antioxidant, cytotoxic effects and phytochemical profiles of galls caused by eriophyidae mite in Juglans regia leaves. Fabad Journal of Pharmaceutical Sciences, 49(3), 525-538. [CrossRef]
  • 18. Hoda, N., Budama Akpolat, L., Mert Si̇vri̇, F., Kurtuluş, D. (2021). Biosynthesis of bimetallic Ag-Au (core-shell) nanoparticles using aqueous extract of bay leaves (Laurus nobilis L.). Journal of the Turkish Chemical Society Section A: Chemistry, 8(4), 1035-1044. [CrossRef]
  • 19. Jayaseelan, C., Ramkumar, R., Rahuman, A.A., Perumal, P. (2012). Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Industrial Crops and Products, 45, 423-429. [CrossRef]
  • 20. Tran, Q.N., Lee, D.H., Park, S.J. Rough-surface gold nanoparticles for plasmonic light absorption enhancement in organic solar cells. Science of Advanced Materials, 9(9),1522-1526. [CrossRef]
  • 21. Ortega-Córdova, R., Sánchez-Carillo, K., Carrasco-Saavedra, S., Ramírez-García, G., Pérez-García, M.G., Soltero-Martínez, J.F.A., Mota-Morales, J.D. (2024). Polyvinylpyrrolidone-mediated synthesis of ultra-stable gold nanoparticles in a nonaqueous choline chloride–urea deep eutectic solvent. RSC Applied Interfaces, 1(3),600-611. [CrossRef]
  • 22. Jyoti, K., Baunthiyal, M., Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. [CrossRef]
  • 23. Tamuly, C., Hazarika, M., Borah, S.Ch., Das, M.R., Boruah, M.P. (2013). In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: Green chemistry approach. Colloids and Surfaces B: Biointerfaces, 102, 627-634. [CrossRef]
  • 24. Mukherjee, P., Roy, M., Mandal, B.P., Dey, G.K., Mukherjee, P.K., Ghatak, J., Tyagi, A.K., Kale S.P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19(7), 075103. [CrossRef]
  • 25. Uzma, M., Sunayana, N., Raghavendra, V.B., Madhu, C.S., Shanmuganathan, R., Brindhadevi, K. (2020). Biogenic synthesis of gold nanoparticles using Commiphora wightii and their cytotoxic effects on breast cancer cell line (MCF-7). Process Biochemistry, 92, 269-276. [CrossRef]
  • 26. Majoumouo, M.S., Sharma, J.R., Sibuyi, N.R.S., Tincho, M.B., Boyom, F.F., Meyer, M. (2020). Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells. Molecules, 25(19), 4469. [CrossRef]
  • 27. Hamelian, M., Hemmati, S., Varmira, K., Veisi, H. (2018). Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. Journal of the Taiwan Institute of Chemical Engineers, 93, 21-30. [CrossRef]
  • 28. Akinfenwa, A.O., Abdul, N.S., Docrat, F.T., Marnewick, J.L., Luckay, R.C., Hussein, A.A. (2021). Cytotoxic effects of phytomediated silver and gold nanoparticles synthesised from Rooibos (Aspalathus linearis), and Aspalathin. Plants, 10(11), 2460. [CrossRef]
  • 29. Sun, B., Hu, N., Han, L., Pi, Y., Gao, Y., Chen, K. (2019). Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 4012-4019. [CrossRef]
  • 30. Al-Khedhairy, A.A., Wahab, R. (2022). Size-dependent cytotoxic and molecular study of the use of gold nanoparticles against liver cancer cells. Applied Sciences, 12(2), 901. [CrossRef]
  • 31. Chen, J., Li, Y., Fang, G., Cao, Z., Shang, Y., Alfarraj, S., Alharbi, S.A., Li, S., Yang, S., Duan, X. (2021). Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arabian Journal of Chemistry, 14(3), 103000. [CrossRef]

GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE

Yıl 2025, Cilt: 49 Sayı: 3, 870 - 877, 19.09.2025
https://doi.org/10.33483/jfpau.1652814

Öz

Objective: Gold nanoparticles (AuNPs) possess unique chemical, physical and biological properties that make them valuable in nanotechnology applications such as drug delivery, biosensor and photothermal therapy. This study aims to synthesize AuNPs using Prunus cerasus (P. cerasus) leaves extract as a green reducing and stabilizing agent and to evaluate their structural and biological properties.
Material and Method: Green synthesis of AuNPs using P. cerasus leaves extract. The obtained AuNPs were characterized using UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and zeta potential analysis to evaluate their structural, morphological and stability properties.
Result and Discussion: TEM analysis confirmed that the synthesized AuNPs were predominantly spherical and had an average size of 33±13 nm. Furthermore, the synthesized AuNPs were determined to have high stability by zeta potential analysis. Biological evaluations showed that AuNPs exhibited selective cytotoxic effects, approximately three times higher antiproliferative activity against liver cancer (HepG2) cells compared to P. cerasus leaves extract. These findings emphasize the potential of P. cerasus extract-mediated AuNPs for cancer treatment, supporting their applications in biomedical nanotechnology.

Kaynakça

  • 1. Mitra, A.K., Agrahari, V., Mandal, A., Cholkar K., Natarajan, C., Shah S., Joseph, M., Trinh H.M., Vaishya R., Yang, X., Hao, Y., Khurana V., Pal, D. (2015). Novel delivery approaches for cancer therapeutics. Journal of Controlled Release, 219, 248-268. [CrossRef]
  • 2. Siddique, S., Chow, J.C.L. (2020). Gold nanoparticles for drug delivery and cancer therapy. Applied Sciences, 10(11), 3824. [CrossRef]
  • 3. Vines, J.B., Yoon, J.H., Ryu, N.E., Lim, D.J., Park H. (2019). Gold nanoparticles for photothermal cancer therapy. Frontiers in Chemistry, 7,167. [CrossRef]
  • 4. Lucky, S.S., Soo, K.C., Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical Reviews, 115(4), 1990-2042. [CrossRef]
  • 5. Kong, F.Y., Zhang, J.W., Li, R.F., Wang, Z.X., Wang, W.J., Wang, W. (2017). Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 22(9), 1445. [CrossRef]
  • 6. Mieszawska, A.J., Mulder, W.J.M., Fayad, Z.A., Cormode, D.P. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics, 10(3), 831-847. [CrossRef]
  • 7. Mert Sivri, F., Akkoc, S., Önem, E., Uysal, E. (2024). Biosynthesis of Ag nanoparticles using Laurus nobilis leaf extract and biomedical applications. Inorganic and Nano-Metal Chemistry,1-8. [CrossRef]
  • 8. Kumar, J.A., Krithiga, T., Manigandan, S., Sathish, S., Renita, A.A., Prakash, P., Naveen Prasad B.S., Praveen Kumar, T.R., Rajasimman, M., Hosseini-Bandegharaei, A., Prabu, D., Crispin, S. (2021). A focus to green synthesis of metal/metal-based oxide nanoparticles: Various mechanisms and applications towards ecological approach. Journal of Cleaner Production, 324, 129198. [CrossRef]
  • 9. Adeyemi, J.O., Oriola, A.O., Onwudiwe, D.C., Oyedeji, A.O. (2022). Plant extracts mediated metal-based nanoparticles: Synthesis and biological applications. Biomolecules, 12(5), 627. [CrossRef]
  • 10. Song, J.Y., Jang, H.K., Kim, B.S. (2009). Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochemistry, 44(10), 1133-1138. [CrossRef]
  • 11. Ankamwar, B. (2010). Biosynthesis of gold nanoparticles (green‐gold) using leaf extract of Terminalia catappa. Journal of Chemistry, 7(4), 1334-1339. [CrossRef]
  • 12. Zhan, G., Huang, J., Lin, L., Lin, W., Emmanuel, K., Li, Q. (2011). Synthesis of gold nanoparticles by Cacumen platycladi leaf extract and its simulated solution: Toward the plant-mediated biosynthetic mechanism. Journal of Nanoparticle Research, 13, 4957-4968. [CrossRef]
  • 13. Tamuly, C., Hazarika, M., Bordoloi, M. (2013). Biosynthesis of Au nanoparticles by Gymnocladus assamicus and its catalytic activity. Materials Letters, 108, 276-279. [CrossRef]
  • 14. Valsalam, S., Agastian, P., Esmail, G.A., Ghilan, A.K.M., Al-Dhabi, N.A., Arasu, M.V. (2019). Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. Journal of Photochemistry and Photobiology B: Biology, 201, 111670. [CrossRef]
  • 15. Dauthal, P., Mukhopadhyay, M. (2012). Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Industrial & Engineering Chemistry Research, 51(40), 13014-13020. [CrossRef]
  • 16. Shirzadi-Ahodashti, M., Mortazavi-Derazkola, S., Ebrahimzadeh, M.A. (2020). Biosynthesis of noble metal nanoparticles using crataegus monogyna leaf extract (CML@ X-NPs, X= Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines. Surfaces and Interfaces, 2, 100697. [CrossRef]
  • 17. Bulut, S., Özüpek, B., Pekacar, S., Özdemir, A., Deliorman, O.D. (2024). Evaluation of antioxidant, cytotoxic effects and phytochemical profiles of galls caused by eriophyidae mite in Juglans regia leaves. Fabad Journal of Pharmaceutical Sciences, 49(3), 525-538. [CrossRef]
  • 18. Hoda, N., Budama Akpolat, L., Mert Si̇vri̇, F., Kurtuluş, D. (2021). Biosynthesis of bimetallic Ag-Au (core-shell) nanoparticles using aqueous extract of bay leaves (Laurus nobilis L.). Journal of the Turkish Chemical Society Section A: Chemistry, 8(4), 1035-1044. [CrossRef]
  • 19. Jayaseelan, C., Ramkumar, R., Rahuman, A.A., Perumal, P. (2012). Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Industrial Crops and Products, 45, 423-429. [CrossRef]
  • 20. Tran, Q.N., Lee, D.H., Park, S.J. Rough-surface gold nanoparticles for plasmonic light absorption enhancement in organic solar cells. Science of Advanced Materials, 9(9),1522-1526. [CrossRef]
  • 21. Ortega-Córdova, R., Sánchez-Carillo, K., Carrasco-Saavedra, S., Ramírez-García, G., Pérez-García, M.G., Soltero-Martínez, J.F.A., Mota-Morales, J.D. (2024). Polyvinylpyrrolidone-mediated synthesis of ultra-stable gold nanoparticles in a nonaqueous choline chloride–urea deep eutectic solvent. RSC Applied Interfaces, 1(3),600-611. [CrossRef]
  • 22. Jyoti, K., Baunthiyal, M., Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. [CrossRef]
  • 23. Tamuly, C., Hazarika, M., Borah, S.Ch., Das, M.R., Boruah, M.P. (2013). In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: Green chemistry approach. Colloids and Surfaces B: Biointerfaces, 102, 627-634. [CrossRef]
  • 24. Mukherjee, P., Roy, M., Mandal, B.P., Dey, G.K., Mukherjee, P.K., Ghatak, J., Tyagi, A.K., Kale S.P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19(7), 075103. [CrossRef]
  • 25. Uzma, M., Sunayana, N., Raghavendra, V.B., Madhu, C.S., Shanmuganathan, R., Brindhadevi, K. (2020). Biogenic synthesis of gold nanoparticles using Commiphora wightii and their cytotoxic effects on breast cancer cell line (MCF-7). Process Biochemistry, 92, 269-276. [CrossRef]
  • 26. Majoumouo, M.S., Sharma, J.R., Sibuyi, N.R.S., Tincho, M.B., Boyom, F.F., Meyer, M. (2020). Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells. Molecules, 25(19), 4469. [CrossRef]
  • 27. Hamelian, M., Hemmati, S., Varmira, K., Veisi, H. (2018). Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. Journal of the Taiwan Institute of Chemical Engineers, 93, 21-30. [CrossRef]
  • 28. Akinfenwa, A.O., Abdul, N.S., Docrat, F.T., Marnewick, J.L., Luckay, R.C., Hussein, A.A. (2021). Cytotoxic effects of phytomediated silver and gold nanoparticles synthesised from Rooibos (Aspalathus linearis), and Aspalathin. Plants, 10(11), 2460. [CrossRef]
  • 29. Sun, B., Hu, N., Han, L., Pi, Y., Gao, Y., Chen, K. (2019). Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 4012-4019. [CrossRef]
  • 30. Al-Khedhairy, A.A., Wahab, R. (2022). Size-dependent cytotoxic and molecular study of the use of gold nanoparticles against liver cancer cells. Applied Sciences, 12(2), 901. [CrossRef]
  • 31. Chen, J., Li, Y., Fang, G., Cao, Z., Shang, Y., Alfarraj, S., Alharbi, S.A., Li, S., Yang, S., Duan, X. (2021). Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arabian Journal of Chemistry, 14(3), 103000. [CrossRef]
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Kimya
Bölüm Araştırma Makalesi
Yazarlar

Firdevs Mert Sivri 0000-0002-0545-0268

Erken Görünüm Tarihi 3 Eylül 2025
Yayımlanma Tarihi 19 Eylül 2025
Gönderilme Tarihi 6 Mart 2025
Kabul Tarihi 22 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 3

Kaynak Göster

APA Mert Sivri, F. (2025). GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE. Journal of Faculty of Pharmacy of Ankara University, 49(3), 870-877. https://doi.org/10.33483/jfpau.1652814
AMA Mert Sivri F. GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE. Ankara Ecz. Fak. Derg. Eylül 2025;49(3):870-877. doi:10.33483/jfpau.1652814
Chicago Mert Sivri, Firdevs. “GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 3 (Eylül 2025): 870-77. https://doi.org/10.33483/jfpau.1652814.
EndNote Mert Sivri F (01 Eylül 2025) GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE. Journal of Faculty of Pharmacy of Ankara University 49 3 870–877.
IEEE F. Mert Sivri, “GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE”, Ankara Ecz. Fak. Derg., c. 49, sy. 3, ss. 870–877, 2025, doi: 10.33483/jfpau.1652814.
ISNAD Mert Sivri, Firdevs. “GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE”. Journal of Faculty of Pharmacy of Ankara University 49/3 (Eylül2025), 870-877. https://doi.org/10.33483/jfpau.1652814.
JAMA Mert Sivri F. GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE. Ankara Ecz. Fak. Derg. 2025;49:870–877.
MLA Mert Sivri, Firdevs. “GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 3, 2025, ss. 870-7, doi:10.33483/jfpau.1652814.
Vancouver Mert Sivri F. GREEN SYNTHESIS OF GOLD NANOPARTICLES USING PRUNUS CERASUS L. LEAVES EXTRACT AND STUDY OF THEIR CYTOTOXIC EFFECT ON LIVER CELL LINE. Ankara Ecz. Fak. Derg. 2025;49(3):870-7.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.