Araştırma Makalesi
BibTex RIS Kaynak Göster

Düzgün olmayan duvar kalınlığına sahip delikli kare içi boş profillerin eksenel basınç altında yerel burkulma davranışının değerlendirilmesi üzerine parametrik çalışma

Yıl 2024, , 326 - 353, 31.07.2024
https://doi.org/10.61112/jiens.1397391

Öz

Bu titiz parametrik çalışmanın amacı, düzgün olmayan duvar kalınlığına sahip kare içi boş bölümlerin (SHS'ler) yerel burkulma davranışı üzerindeki deliklerin etkisini araştırmaktır. Mevcut çalışmada izlenen sonlu elemanlar prosedürü ilk olarak eksenel basınç altında düzgün yan duvar ve flanş kalınlığına sahip delikli SHS'nin yerel burkulma davranışı için belgelenen mevcut test sonuçlarına göre doğrulanmıştır. Doğrusal elastik özdeğer burkulması ve elastoplastik burkulma analizleri Abaqus mühendislik sonlu elemanlar kodu kullanılarak uygulanmıştır. Sayısal prosedürün doğrulanması, sonlu eleman sonuçlarının, tekdüze duvar kalınlığına sahip delikli SHS'nin ilk yerel burkulma modu şekli ve yük-deformasyon eğrileri açısından mevcut test sonuçlarıyla olumlu bir şekilde karşılaştırılması yoluyla elde edilmiştir. Doğrulanmış sayısal prosedür, düzgün olmayan kalınlıktaki SHS'nin yerel burkulma tepkisi üzerindeki delik etkisini bulma problemine uygulanmıştır. Sonlu eleman analizleri, 0.3 ile 0.9 arasında değişen dört farklı yan duvar genişliği/delik çapı oranı için gerçekleştirilmiştir. Sonlu eleman analizi sonuçları, deliklerin varlığının SHS'nin yerel burkulma modu şeklini etkilemediğini ancak kritik yerel burkulma yüklerini önemli ölçüde etkilediğini ortaya çıkarmıştır. Sonuçlar, delik çapının arttırılmasının, kritik yerel burkulma yükünde daha belirgin ve ciddi bir azalmaya yol açtığını ortaya koymuştur. Çalışmanın sonuçları ayrıca, eşit olmayan duvar kalınlığına sahip SHS'nin kritik burkulma sonrası yükünün, eşit duvar kalınlığına sahip SHS'ye kıyasla deliklere karşı daha az duyarlı olduğunu göstermiştir. Bu parametrik çalışma kapsamında elde edilen sonuçlar, delikli SHS'lerin gerçek tasarımında kullanılmak üzere pratik mühendisliğe sunulmuştur.

Kaynakça

  • Singh TG, Singh KD (2017) Structural performance of YSt–310 cold–formed tubular steel stub columns. Thin-Walled Struct 121:25–40. https://doi.org/10.1016/j.tws.2017.09.022
  • Gardner L, Saari N, et al. (2010) Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections. Thin-Walled Struct 48:495–507. https://doi.org/10.1016/j.tws.2010.02.003
  • Gardner L, Yun X (2018) Description of stress-strain curves for cold-formed steels. Constr Build Mater 189:527–538. https://doi.org/10.1016/j.conbuildmat.2018.08.195
  • Xiao‐Ling Z, J. HG (1992) Square and Rectangular Hollow Sections Subject to Combined Actions. J Struct Eng 118:648–667. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:3(648)
  • Singh TG (2019) Structural performance of YSt–310 Cold–formed Steel Tubular Columns. Indian Institute of Technology Guwahati
  • Billingham J, Sharp J V, et al. (2003) Review of the performance of high strength steels used offshore. Cranfield
  • Wardenier J, Packer JA, et al. (2010) Hollow sections in structural applications. CIDECT, Geneva
  • Nuraliyev M, Dundar MA, et al. (2022) Determination of optimal dimensions of polymer-based rectangular hollow sections based on both adequate-strength and local buckling criteria: Analytical and numerical studies. Mech Based Des Struct Mach 1–31. https://doi.org/10.1080/15397734.2022.2139720
  • Yu C, Schafer BW (2007) Effect of Longitudinal Stress Gradients on Elastic Buckling of Thin Plates. J Eng Mech 133:452–463. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(452)
  • Uy B (2000) Strength of Concrete Filled Steel Box Columns Incorporating Local Buckling. J Struct Eng 126:341–352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)
  • Schillo N, Feldmann M (2015) Local buckling behaviour of welded box sections made of high‐strength steel. Steel Constr 8:179–186. https://doi.org/10.1002/stco.201510028
  • Ziemian RD (2010) Guide to Stability Design Criteria for Metal Structures. John Wiley & Sons
  • da Silva CCC, Helbig D, et al. (2019) Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. J Brazilian Soc Mech Sci Eng 41:309. https://doi.org/10.1007/s40430-019-1815-7
  • Vieira L, Gonçalves R, et al. (2018) On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled Struct 129:10–19. https://doi.org/10.1016/j.tws.2018.03.022
  • Vieira L, Gonçalves R, et al. (2018) Local buckling of RHS members under biaxial bending and axial force. In: Conference: Eighth International Conference on Thin-walled Structures. Lisbon
  • Fiorino L, Iuorio O, et al. (2014) Designing CFS structures: The new school bfs in naples. Thin-Walled Struct 78:37–47. https://doi.org/10.1016/j.tws.2013.12.008
  • Lim JBP, Nethercot DA (2003) Ultimate strength of bolted moment-connections between cold-formed steel members. Thin-Walled Struct 41:1019–1039. https://doi.org/10.1016/S0263-8231(03)00045-4
  • Yuan HX, Wang YQ, et al. (2014) Local–overall interactive buckling of welded stainless steel box section compression members. Eng Struct 67:62–76. https://doi.org/10.1016/j.engstruct.2014.02.012
  • Lim JBP, Nethercot DA (2004) Finite Element Idealization of a Cold-Formed Steel Portal Frame. J Struct Eng 130:78–94. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(78)
  • Zhu J-H, Su M, et al. (2021) Flexural behaviour of cold-formed steel oval hollow section beams. J Constr Steel Res 180:106605. https://doi.org/10.1016/j.jcsr.2021.106605
  • Huang Y, Young B (2013) Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members. Thin-Walled Struct 73:216–228. https://doi.org/10.1016/j.tws.2013.07.019
  • Hancock G. (2003) Cold-formed steel structures. J Constr Steel Res 59:473–487. https://doi.org/10.1016/S0143-974X(02)00103-7
  • Karren KW (1967) Corner Properties of Cold-Formed Steel Shapes. J Struct Div 93:401–432. https://doi.org/10.1061/JSDEAG.0001590
  • Wang J, Shu G, et al. (2019) Investigations on cold-forming effect of cold-drawn duplex stainless steel tubular sections. J Constr Steel Res 152:81–93. https://doi.org/10.1016/j.jcsr.2018.04.020
  • Singh TG, Singh KD (2019) Mechanical properties of YSt-310 cold-formed steel hollow sections at elevated temperatures. J Constr Steel Res 158:53–70. https://doi.org/10.1016/j.jcsr.2019.03.004
  • Singh TG, Chan T-M (2021) Effect of access openings on the buckling performance of square hollow section module stub columns. J Constr Steel Res 177:106438. https://doi.org/10.1016/j.jcsr.2020.106438
  • Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. Natl Advis Comm Aeronaut Technical Note No. 902
  • Rasmussen KJR (2003) Full-range stress–strain curves for stainless steel alloys. J Constr Steel Res 59:47–61. https://doi.org/10.1016/S0143-974X(02)00018-4
  • Quach WM, Teng JG, et al. (2008) Three-Stage Full-Range Stress-Strain Model for Stainless Steels. J Struct Eng 134:1518–1527. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1518)
  • Ye J, Mojtabaei SM, et al. (2018) Local-flexural interactive buckling of standard and optimised cold-formed steel columns. J Constr Steel Res 144:106–118. https://doi.org/10.1016/j.jcsr.2018.01.012
  • Kwon YB, Kim BS, et al. (2009) Compression tests of high strength cold-formed steel channels with buckling interaction. J Constr Steel Res 65:278–289. https://doi.org/10.1016/j.jcsr.2008.07.005
  • Moen CD, Schafer BW (2009) Elastic buckling of cold-formed steel columns and beams with holes. Eng Struct 31:2812–2824. https://doi.org/10.1016/j.engstruct.2009.07.007
  • Li Z, Schafer BW (2010) Application of the finite strip method in cold-formed steel member design. J Constr Steel Res 66:971–980. https://doi.org/10.1016/j.jcsr.2010.04.001
  • Schafer BW (2002) Local, Distortional, and Euler Buckling of Thin-Walled Columns. J Struct Eng 128:289–299. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(289)
  • Seif M, Schafer BW (2010) Local buckling of structural steel shapes. J Constr Steel Res 66:1232–1247. https://doi.org/10.1016/j.jcsr.2010.03.015
  • Kroll W, Fisher G, et al. (1943) Charts for the Calculation of the Critical Stress for Local Instability of Columns with I, Z, Channel and Rectangular Tube Sections. Washington
  • da Silva CCC, Helbig D, et al. (2019) Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. J Brazilian Soc Mech Sci Eng 41:309. https://doi.org/10.1007/s40430-019-1815-7
  • Rezaeepazhand J, Jafari M (2010) Stress concentration in metallic plates with special shaped cutout. Int J Mech Sci 52:96–102. https://doi.org/10.1016/j.ijmecsci.2009.10.013
  • Rezaeepazhand J, Jafari M (2005) Stress analysis of perforated composite plates. Compos Struct 71:463–468. https://doi.org/10.1016/j.compstruct.2005.09.017
  • Konieczny M, Gasiak G, et al. (2019) The FEA and experimental stress analysis in circular perforated plates loaded with concentrated force. Frat ed Integrità Strutt 14:164–173. https://doi.org/10.3221/IGF-ESIS.51.13
  • Rahimi MN, Kefal A, et al. (2021) An improved ordinary-state based peridynamic formulation for modeling FGMs with sharp interface transitions. Int J Mech Sci 197:106322. https://doi.org/10.1016/j.ijmecsci.2021.106322
  • Rahimi MN, Kefal A, et al. (2020) An ordinary state-based peridynamic model for toughness enhancement of brittle materials through drilling stop-holes. Int J Mech Sci 182:105773. https://doi.org/10.1016/j.ijmecsci.2020.105773
  • Maiorana E, Pellegrino C, et al. (2009) Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment. Thin-Walled Struct 47:241–255. https://doi.org/10.1016/j.tws.2008.08.003
  • Kee Paik J (2008) Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads. Thin-Walled Struct 46:207–213. https://doi.org/10.1016/j.tws.2007.07.010
  • El-Sawy KM, Nazmy AS, et al. (2004) Elasto-plastic buckling of perforated plates under uniaxial compression. Thin-Walled Struct 42:1083–1101. https://doi.org/10.1016/j.tws.2004.03.002
  • Kathage K, Misiek T, et al. (2006) Stiffness and critical buckling load of perforated sheeting. Thin-Walled Struct 44:1223–1230. https://doi.org/10.1016/j.tws.2007.01.009
  • Shimizu S (2007) Tension buckling of plate having a hole. Thin-Walled Struct 45:827–833. https://doi.org/10.1016/j.tws.2007.08.033
  • Azizian ZG, Roberts TM (1983) Buckling and Elastoplastic Collapse of Perforated Plates. In: Instability and plastic collapse of steel structures. pp 322–328
  • Shanmugam NE, Narayanan R (1982) Elastic buckling of perforated square plates for various loading and edge conditions. In: International conference on finite element methods. pp 658–672
  • Sabir AB, Chow FY (1983) Elastic buckling of flat panels containing circular and square holes. In: Granada Publishing Ltd,. pp 311–321
  • Larsson PL (1987) On buckling of orthotropic compressed plates with circular holes. Compos Struct 7:103–121. https://doi.org/10.1016/0263-8223(87)90002-X
  • Marshall NS, Nurick GN (1970) The effect of induced imperfections on the formation of the first lobe of symmetric progressive buckling of thin-walled square tubes. WIT Trans Built Environ 35
  • Jullien JF, Limam A (1998) Effects of openings of the buckling of cylindrical shells subjected to axial compression. Thin-Walled Struct 31:187–202. https://doi.org/10.1016/S0263-8231(98)00003-2
  • Pu Y, Godley MHR, et al. (1999) Prediction of Ultimate Capacity of Perforated Lipped Channels. J Struct Eng 125:510–514. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(510)
  • Shanmugam N., Dhanalakshmi M (2001) Design for openings in cold-formed steel channel stub columns. Thin-Walled Struct 39:961–981. https://doi.org/10.1016/S0263-8231(01)00045-3
  • Dhanalakshmi M, Shanmugam N. (2001) Design for openings in equal-angle cold-formed steel stub columns. Thin-Walled Struct 39:167–187. https://doi.org/10.1016/S0263-8231(00)00047-1
  • Umbarkar KR, Patton LM, et al. (2013) Effect of single circular perforation in lean duplex stainless steel (LDSS) hollow circular stub columns under pure axial compression. Thin-Walled Struct 68:18–25. https://doi.org/https://doi.org/10.1016/j.tws.2013.02.015
  • Puthli R, Packer JA (2013) Structural design using cold‐formed hollow sections. Steel Constr 6:150–157. https://doi.org/10.1002/stco.201310013
  • Singh TG, Singh KD (2018) Experimental investigation on performance of perforated cold–formed steel tubular stub columns. Thin-Walled Struct 131:107–121. https://doi.org/10.1016/j.tws.2018.06.042
  • Iman M, Suhendro B, et al. (2018) Numerical Investigation on the Buckling Failure of Slender Tubular Member with Cutout Presence. Appl Mech Mater 881:122–131. https://doi.org/10.4028/www.scientific.net/AMM.881.122
  • Zhang K, Varma AH, et al. (2014) Effect of shear connectors on local buckling and composite action in steel concrete composite walls. Nucl Eng Des 269:231–239. https://doi.org/10.1016/j.nucengdes.2013.08.035
  • Masood SN, Gaddikeri KM, et al. (2021) Experimental and finite element numerical studies on the post-buckling behavior of composite stiffened panels. Mech Adv Mater Struct 28:1677–1690. https://doi.org/10.1080/15376494.2019.1701151
  • Soo Kim T, Kuwamura H (2007) Finite element modeling of bolted connections in thin-walled stainless steel plates under static shear. Thin-Walled Struct 45:407–421. https://doi.org/10.1016/j.tws.2007.03.006
  • Hassan MK, Tao Z, et al. (2014) Finite Element Analysis of Steel Beam-Cfst Column Joints With Blind Bolts. Australas Struct Eng 2014 Conf (ASEC 2014) 56(1–10)
  • Zhi X, Wang Y, et al. (2022) Study of local buckling performance of 7075-T6 high-strength aluminium alloy H-section stub columns. Thin-Walled Struct 180:109925. https://doi.org/10.1016/j.tws.2022.109925
  • Theofanous M, Gardner L (2009) Testing and numerical modelling of lean duplex stainless steel hollow section columns. Eng Struct 31:3047–3058. https://doi.org/10.1016/j.engstruct.2009.08.004
  • Sachidananda K, Singh KD (2015) Numerical study of fixed ended lean duplex stainless steel (LDSS) flat oval hollow stub column under pure axial compression. Thin-Walled Struct 96:105–119. https://doi.org/10.1016/j.tws.2015.07.016
  • Dassault Systèmes (2012) Abaqus Analysis User’s Manual 6.12. http://130.149.89.49:2080/v6.12. Accessed 14 Nov 2022

Parametric study on the assessment of the local buckling behavior of perforated square hollow sections with non-uniform wall thickness under axial compression

Yıl 2024, , 326 - 353, 31.07.2024
https://doi.org/10.61112/jiens.1397391

Öz

The aim of this rigorous parametric study is to explore the influence of perforations on the local buckling behavior of square hollow sections (SHSs) possessing non-uniform wall thickness. A finite element procedure followed in the current study has been first validated against existing test results documented for the local buckling behavior of the perforated SHS with uniform web and flange segment thickness under axial compression. The linear elastic eigenvalue buckling and elastoplastic buckling analyses have been implemented using the Abaqus engineering finite element code. The verification of the numerical procedure has been achieved by favorably comparing the finite element results with the existing test results in terms of the first local buckling mode shape and load-end shortening curves of the perforated SHS with uniform wall thickness. . The verified numerical procedure has been applied to the problem of finding the perforation effect on the local buckling response of the SHS with non-uniform thickness. Finite element analyses have been performed for four various web width-to-perforation diameter ratios ranging from 0.3 to 0.9. Finite element analysis results have revealed that the presence of perforations does not influence the local buckling mode shape of the SHS but considerably affects the critical local buckling loads. The results have put forth that increasing perforation diameter leads to a more pronounced and drastic decrease in the critical local buckling load. The outcomes of the study have also shown that the critical post-buckling load of the SHS with non-uniform wall thickness is less susceptible to perforations compared to the SHS with uniform wall thickness. The results obtained in the context of this parametric study have been made available to practical engineering for use in actual design of the perforated SHSs.

Kaynakça

  • Singh TG, Singh KD (2017) Structural performance of YSt–310 cold–formed tubular steel stub columns. Thin-Walled Struct 121:25–40. https://doi.org/10.1016/j.tws.2017.09.022
  • Gardner L, Saari N, et al. (2010) Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections. Thin-Walled Struct 48:495–507. https://doi.org/10.1016/j.tws.2010.02.003
  • Gardner L, Yun X (2018) Description of stress-strain curves for cold-formed steels. Constr Build Mater 189:527–538. https://doi.org/10.1016/j.conbuildmat.2018.08.195
  • Xiao‐Ling Z, J. HG (1992) Square and Rectangular Hollow Sections Subject to Combined Actions. J Struct Eng 118:648–667. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:3(648)
  • Singh TG (2019) Structural performance of YSt–310 Cold–formed Steel Tubular Columns. Indian Institute of Technology Guwahati
  • Billingham J, Sharp J V, et al. (2003) Review of the performance of high strength steels used offshore. Cranfield
  • Wardenier J, Packer JA, et al. (2010) Hollow sections in structural applications. CIDECT, Geneva
  • Nuraliyev M, Dundar MA, et al. (2022) Determination of optimal dimensions of polymer-based rectangular hollow sections based on both adequate-strength and local buckling criteria: Analytical and numerical studies. Mech Based Des Struct Mach 1–31. https://doi.org/10.1080/15397734.2022.2139720
  • Yu C, Schafer BW (2007) Effect of Longitudinal Stress Gradients on Elastic Buckling of Thin Plates. J Eng Mech 133:452–463. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(452)
  • Uy B (2000) Strength of Concrete Filled Steel Box Columns Incorporating Local Buckling. J Struct Eng 126:341–352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)
  • Schillo N, Feldmann M (2015) Local buckling behaviour of welded box sections made of high‐strength steel. Steel Constr 8:179–186. https://doi.org/10.1002/stco.201510028
  • Ziemian RD (2010) Guide to Stability Design Criteria for Metal Structures. John Wiley & Sons
  • da Silva CCC, Helbig D, et al. (2019) Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. J Brazilian Soc Mech Sci Eng 41:309. https://doi.org/10.1007/s40430-019-1815-7
  • Vieira L, Gonçalves R, et al. (2018) On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled Struct 129:10–19. https://doi.org/10.1016/j.tws.2018.03.022
  • Vieira L, Gonçalves R, et al. (2018) Local buckling of RHS members under biaxial bending and axial force. In: Conference: Eighth International Conference on Thin-walled Structures. Lisbon
  • Fiorino L, Iuorio O, et al. (2014) Designing CFS structures: The new school bfs in naples. Thin-Walled Struct 78:37–47. https://doi.org/10.1016/j.tws.2013.12.008
  • Lim JBP, Nethercot DA (2003) Ultimate strength of bolted moment-connections between cold-formed steel members. Thin-Walled Struct 41:1019–1039. https://doi.org/10.1016/S0263-8231(03)00045-4
  • Yuan HX, Wang YQ, et al. (2014) Local–overall interactive buckling of welded stainless steel box section compression members. Eng Struct 67:62–76. https://doi.org/10.1016/j.engstruct.2014.02.012
  • Lim JBP, Nethercot DA (2004) Finite Element Idealization of a Cold-Formed Steel Portal Frame. J Struct Eng 130:78–94. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(78)
  • Zhu J-H, Su M, et al. (2021) Flexural behaviour of cold-formed steel oval hollow section beams. J Constr Steel Res 180:106605. https://doi.org/10.1016/j.jcsr.2021.106605
  • Huang Y, Young B (2013) Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members. Thin-Walled Struct 73:216–228. https://doi.org/10.1016/j.tws.2013.07.019
  • Hancock G. (2003) Cold-formed steel structures. J Constr Steel Res 59:473–487. https://doi.org/10.1016/S0143-974X(02)00103-7
  • Karren KW (1967) Corner Properties of Cold-Formed Steel Shapes. J Struct Div 93:401–432. https://doi.org/10.1061/JSDEAG.0001590
  • Wang J, Shu G, et al. (2019) Investigations on cold-forming effect of cold-drawn duplex stainless steel tubular sections. J Constr Steel Res 152:81–93. https://doi.org/10.1016/j.jcsr.2018.04.020
  • Singh TG, Singh KD (2019) Mechanical properties of YSt-310 cold-formed steel hollow sections at elevated temperatures. J Constr Steel Res 158:53–70. https://doi.org/10.1016/j.jcsr.2019.03.004
  • Singh TG, Chan T-M (2021) Effect of access openings on the buckling performance of square hollow section module stub columns. J Constr Steel Res 177:106438. https://doi.org/10.1016/j.jcsr.2020.106438
  • Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. Natl Advis Comm Aeronaut Technical Note No. 902
  • Rasmussen KJR (2003) Full-range stress–strain curves for stainless steel alloys. J Constr Steel Res 59:47–61. https://doi.org/10.1016/S0143-974X(02)00018-4
  • Quach WM, Teng JG, et al. (2008) Three-Stage Full-Range Stress-Strain Model for Stainless Steels. J Struct Eng 134:1518–1527. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1518)
  • Ye J, Mojtabaei SM, et al. (2018) Local-flexural interactive buckling of standard and optimised cold-formed steel columns. J Constr Steel Res 144:106–118. https://doi.org/10.1016/j.jcsr.2018.01.012
  • Kwon YB, Kim BS, et al. (2009) Compression tests of high strength cold-formed steel channels with buckling interaction. J Constr Steel Res 65:278–289. https://doi.org/10.1016/j.jcsr.2008.07.005
  • Moen CD, Schafer BW (2009) Elastic buckling of cold-formed steel columns and beams with holes. Eng Struct 31:2812–2824. https://doi.org/10.1016/j.engstruct.2009.07.007
  • Li Z, Schafer BW (2010) Application of the finite strip method in cold-formed steel member design. J Constr Steel Res 66:971–980. https://doi.org/10.1016/j.jcsr.2010.04.001
  • Schafer BW (2002) Local, Distortional, and Euler Buckling of Thin-Walled Columns. J Struct Eng 128:289–299. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(289)
  • Seif M, Schafer BW (2010) Local buckling of structural steel shapes. J Constr Steel Res 66:1232–1247. https://doi.org/10.1016/j.jcsr.2010.03.015
  • Kroll W, Fisher G, et al. (1943) Charts for the Calculation of the Critical Stress for Local Instability of Columns with I, Z, Channel and Rectangular Tube Sections. Washington
  • da Silva CCC, Helbig D, et al. (2019) Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. J Brazilian Soc Mech Sci Eng 41:309. https://doi.org/10.1007/s40430-019-1815-7
  • Rezaeepazhand J, Jafari M (2010) Stress concentration in metallic plates with special shaped cutout. Int J Mech Sci 52:96–102. https://doi.org/10.1016/j.ijmecsci.2009.10.013
  • Rezaeepazhand J, Jafari M (2005) Stress analysis of perforated composite plates. Compos Struct 71:463–468. https://doi.org/10.1016/j.compstruct.2005.09.017
  • Konieczny M, Gasiak G, et al. (2019) The FEA and experimental stress analysis in circular perforated plates loaded with concentrated force. Frat ed Integrità Strutt 14:164–173. https://doi.org/10.3221/IGF-ESIS.51.13
  • Rahimi MN, Kefal A, et al. (2021) An improved ordinary-state based peridynamic formulation for modeling FGMs with sharp interface transitions. Int J Mech Sci 197:106322. https://doi.org/10.1016/j.ijmecsci.2021.106322
  • Rahimi MN, Kefal A, et al. (2020) An ordinary state-based peridynamic model for toughness enhancement of brittle materials through drilling stop-holes. Int J Mech Sci 182:105773. https://doi.org/10.1016/j.ijmecsci.2020.105773
  • Maiorana E, Pellegrino C, et al. (2009) Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment. Thin-Walled Struct 47:241–255. https://doi.org/10.1016/j.tws.2008.08.003
  • Kee Paik J (2008) Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads. Thin-Walled Struct 46:207–213. https://doi.org/10.1016/j.tws.2007.07.010
  • El-Sawy KM, Nazmy AS, et al. (2004) Elasto-plastic buckling of perforated plates under uniaxial compression. Thin-Walled Struct 42:1083–1101. https://doi.org/10.1016/j.tws.2004.03.002
  • Kathage K, Misiek T, et al. (2006) Stiffness and critical buckling load of perforated sheeting. Thin-Walled Struct 44:1223–1230. https://doi.org/10.1016/j.tws.2007.01.009
  • Shimizu S (2007) Tension buckling of plate having a hole. Thin-Walled Struct 45:827–833. https://doi.org/10.1016/j.tws.2007.08.033
  • Azizian ZG, Roberts TM (1983) Buckling and Elastoplastic Collapse of Perforated Plates. In: Instability and plastic collapse of steel structures. pp 322–328
  • Shanmugam NE, Narayanan R (1982) Elastic buckling of perforated square plates for various loading and edge conditions. In: International conference on finite element methods. pp 658–672
  • Sabir AB, Chow FY (1983) Elastic buckling of flat panels containing circular and square holes. In: Granada Publishing Ltd,. pp 311–321
  • Larsson PL (1987) On buckling of orthotropic compressed plates with circular holes. Compos Struct 7:103–121. https://doi.org/10.1016/0263-8223(87)90002-X
  • Marshall NS, Nurick GN (1970) The effect of induced imperfections on the formation of the first lobe of symmetric progressive buckling of thin-walled square tubes. WIT Trans Built Environ 35
  • Jullien JF, Limam A (1998) Effects of openings of the buckling of cylindrical shells subjected to axial compression. Thin-Walled Struct 31:187–202. https://doi.org/10.1016/S0263-8231(98)00003-2
  • Pu Y, Godley MHR, et al. (1999) Prediction of Ultimate Capacity of Perforated Lipped Channels. J Struct Eng 125:510–514. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(510)
  • Shanmugam N., Dhanalakshmi M (2001) Design for openings in cold-formed steel channel stub columns. Thin-Walled Struct 39:961–981. https://doi.org/10.1016/S0263-8231(01)00045-3
  • Dhanalakshmi M, Shanmugam N. (2001) Design for openings in equal-angle cold-formed steel stub columns. Thin-Walled Struct 39:167–187. https://doi.org/10.1016/S0263-8231(00)00047-1
  • Umbarkar KR, Patton LM, et al. (2013) Effect of single circular perforation in lean duplex stainless steel (LDSS) hollow circular stub columns under pure axial compression. Thin-Walled Struct 68:18–25. https://doi.org/https://doi.org/10.1016/j.tws.2013.02.015
  • Puthli R, Packer JA (2013) Structural design using cold‐formed hollow sections. Steel Constr 6:150–157. https://doi.org/10.1002/stco.201310013
  • Singh TG, Singh KD (2018) Experimental investigation on performance of perforated cold–formed steel tubular stub columns. Thin-Walled Struct 131:107–121. https://doi.org/10.1016/j.tws.2018.06.042
  • Iman M, Suhendro B, et al. (2018) Numerical Investigation on the Buckling Failure of Slender Tubular Member with Cutout Presence. Appl Mech Mater 881:122–131. https://doi.org/10.4028/www.scientific.net/AMM.881.122
  • Zhang K, Varma AH, et al. (2014) Effect of shear connectors on local buckling and composite action in steel concrete composite walls. Nucl Eng Des 269:231–239. https://doi.org/10.1016/j.nucengdes.2013.08.035
  • Masood SN, Gaddikeri KM, et al. (2021) Experimental and finite element numerical studies on the post-buckling behavior of composite stiffened panels. Mech Adv Mater Struct 28:1677–1690. https://doi.org/10.1080/15376494.2019.1701151
  • Soo Kim T, Kuwamura H (2007) Finite element modeling of bolted connections in thin-walled stainless steel plates under static shear. Thin-Walled Struct 45:407–421. https://doi.org/10.1016/j.tws.2007.03.006
  • Hassan MK, Tao Z, et al. (2014) Finite Element Analysis of Steel Beam-Cfst Column Joints With Blind Bolts. Australas Struct Eng 2014 Conf (ASEC 2014) 56(1–10)
  • Zhi X, Wang Y, et al. (2022) Study of local buckling performance of 7075-T6 high-strength aluminium alloy H-section stub columns. Thin-Walled Struct 180:109925. https://doi.org/10.1016/j.tws.2022.109925
  • Theofanous M, Gardner L (2009) Testing and numerical modelling of lean duplex stainless steel hollow section columns. Eng Struct 31:3047–3058. https://doi.org/10.1016/j.engstruct.2009.08.004
  • Sachidananda K, Singh KD (2015) Numerical study of fixed ended lean duplex stainless steel (LDSS) flat oval hollow stub column under pure axial compression. Thin-Walled Struct 96:105–119. https://doi.org/10.1016/j.tws.2015.07.016
  • Dassault Systèmes (2012) Abaqus Analysis User’s Manual 6.12. http://130.149.89.49:2080/v6.12. Accessed 14 Nov 2022
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katı Mekanik, Makine Mühendisliğinde Sayısal Yöntemler, Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Akif Dundar 0000-0001-5463-6774

Mirali Nuraliyev 0000-0002-3063-8414

Yayımlanma Tarihi 31 Temmuz 2024
Gönderilme Tarihi 28 Kasım 2023
Kabul Tarihi 3 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Dundar, M. A., & Nuraliyev, M. (2024). Parametric study on the assessment of the local buckling behavior of perforated square hollow sections with non-uniform wall thickness under axial compression. Journal of Innovative Engineering and Natural Science, 4(2), 326-353. https://doi.org/10.61112/jiens.1397391


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0