Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 2, 37 - 47, 31.12.2020

Öz

Kaynakça

  • [1] Seme, S., Stumberger, G. Vorsic, J. (2011). Maximum Efficiency Trajectories of a Two-Axis Sun Tracking System Determined Considering Tracking System Consumption. IEEE Transactions on Power Electronics, 26, 1280-1290.
  • [2] Prinsloo, G., Dobson, R. (2014). Solar Tracking. High Precision Solar Position Algorithms, Programs, Software and Source-Code for Computing the Solar Vector, Solar Coordinates. Sun Angles in Microprocessor, PLC, Arduino, PIC and PC-Based Sun Tracking Devices or Dynamic Sun Following Hardware. Stellenbosch: SolarBooks. ISBN 978-0-620-61576-1, 1-542.
  • [3] Serhan M., El-Chaar L. (2010). Two axes Sun Tracking System: Comparison with a fixed system. International Conference on Renewable Energies and Power Quality (ICREPQ’10), at Granada (Spain) on 23-25 March, 2010.
  • [4] Khalil, A. A., El-Singaby, M. (2003). Position control of sun tracking system. Midwest Symposium on Circuits and Systems, 3, 1134 – 1137, 27-30th December, 2003. DOI:10.1109/MWSCAS.2003.1562493
  • [5] Dankoff, W. Glossary of Solar Water Pumping Terms and Related Components. Available www.dankoffsolarpumps.com
  • [6] Nijegodorov, N., Devan, K. R. S., Jain, P. K., Carlsson, S. (1994). Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate variously oriented at any latitude. Renewable Energy, 4(5), 529-543. DOI: 10.1016/0960-1481(94)90215-1
  • [7] Yakup M., Malik A. Q. (2001). Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renewable Energy, 24(2), 223-234. DOI: 10.1016/S0960-1481(00)00168-3
  • [8] Gunerhan, H., Hepbasli, A. (2007). Determination of the optimum tilt angle of solar collectors for building applications. 42(2), 779-783. DOI: 10.1016/j.buildenv.2005.09.012
  • [9] Sharan, A. M., Prateek, M. (2006). Automation of minimum torque based accurate solar tracking systems using microprocessors. Journal of the Indian Institute of Science, 86(5), 415-437.
  • [10] Huynh, P. T., Cho, B. H. (1999). Design and analysis of a regulated peak-power tracking system. IEEE Transactions on Energy Conversion, 10(2), 360-367. DOI: 10.1109/60.391904
  • [11] Hiyama, T., Kouzuma, S., Imakubo, T. (1995). Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Transactions on Energy Conversion, 10(2), 360-367, 1995. DOI: 10.1109/60.391904
  • [12] Baz, A., Sabry, A., Mobarak, A., Morcos, S. (1984). On the tracking error of self-contained solar tracking system. Journal of Solar Energy, 106(4), 416-422. https://doi.org/10.1115/1.3267620
  • [13] Rustemli, S., Dincadam, F., Demirtas, M. (2010). Performance comparison of the sun tracking system and fixed system in the application of heating and lightning. The Arabian Journal for Science and Engineering, 35(28), 171-183.
  • [14] Zhang, Q., Yu, H., Zhang, Q., Zhang, Z. et al, (2015). A Solar Automatic Tracking System that Generates Power for Lighting Greenhouses. Energies, 8, 7367-7380, doi:10.3390/en8077367
  • [15] Tirmikci, C. A., Yavuz, C. (2015). Comparison of Solar Trackers and Application of a Sensor Less Dual Axis Solar Tracker. Journal of Energy and Power Engineering, 9, 556-561. Doi: 10.17265/1934-8975/2015.06.006
  • [16] Maatallah, T., El Alimi, S., Nassrallah, S. B. (2011). Performance modeling and investigation of fixed single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia. Renewable and Sustainable Energy Reviews, 15(8), 4053-4066, 2011. DOI: 10.1016/j.rser.2011.07.037
  • [17] Deepthi, S., Ponni, A., Ranjitha, R., Dhanabal, R. (2013). Comparison of Efficiencies of Single-axis Tracking System and Dual-axis Tracking System with Fixed Mount. International Journal of Engineering Science and Innovative Technology, 2(2), 425-430.
  • [18] Uebari, B.; Bere, B. S.; Komi, I. S. B.; Sunday, L. U. (2016). Design of Automatic two-axis Solar Tracker with Fuzzy Logic Controller for Maximum Power System in Nigeria. International Journal of Innovative Science, Engineering and Technology, 3(11), 329-336.
  • [19] Duffie J. A., Beckman W. A. (2006). Solar Engineering of Thermal Process. John Wiley and Sons, Inc. Hoboken, New Jersey, Third Edition, 2006. pp. 15-16.
  • [20] Duffie J. A., Beckman W. A. (1991). Solar Engineering of Thermal Process. New York, USA: Wiley-Interscience, Second Edition, 15-16.
  • [21] Kalogirous S. A. (2014). Solar Energy Engineering Process and System. Elsevier Inc. Amsterdam. Second Edition, 59-60.
  • [22] Mai S. E., Wagdy R. A., Ismail M. H., Mikail A. (2017). Design of single-axis and dual-axis tracking systems protected against high wind speed. International Journal of Scientific and Technology Research, 6(9), 84-89.
  • [23] Waziri N. H., Usman A. M., Enaburekhan J. S. (2015). Optimum Temperature and Solar Radiation Periods for Kano using Flat Plate Collector. Journal of Engineering, Design and Technology, 13(4), 570-578.

Assessing Performance of Manually Controlled Solar Tracking System in Climate Condition of Kano, Nigeria

Yıl 2020, Cilt: 3 Sayı: 2, 37 - 47, 31.12.2020

Öz

A solar tracking system is a mechanism used to move and position a solar photovoltaic in such a way that it is positioned and oriented perpendicular to the sun beam for maximum amount of solar irradiance and maximum power outputs. However, fixed solar panel is more preferred than tracking module because it is cost effective. In this paper, the amount of solar irradiance of the tracking module is compared with fixed solar module by experimentally in Kano, Nigeria for the three months (May, June, July, 2019). It was observed that the highest average amount solar irradiance extracted by tracking collector was 10923.67 W/m2 and average solar irradiance harnessed by stationary collector (without tracking) was 9151.33 W/m2. The average percentage change of solar irradiance with tracking was 16.22 % over solar irradiance without tracking (stationary). In conclusion, the dual-axis tracking module is extracting more amount of solar irradiance than fixed module.

Kaynakça

  • [1] Seme, S., Stumberger, G. Vorsic, J. (2011). Maximum Efficiency Trajectories of a Two-Axis Sun Tracking System Determined Considering Tracking System Consumption. IEEE Transactions on Power Electronics, 26, 1280-1290.
  • [2] Prinsloo, G., Dobson, R. (2014). Solar Tracking. High Precision Solar Position Algorithms, Programs, Software and Source-Code for Computing the Solar Vector, Solar Coordinates. Sun Angles in Microprocessor, PLC, Arduino, PIC and PC-Based Sun Tracking Devices or Dynamic Sun Following Hardware. Stellenbosch: SolarBooks. ISBN 978-0-620-61576-1, 1-542.
  • [3] Serhan M., El-Chaar L. (2010). Two axes Sun Tracking System: Comparison with a fixed system. International Conference on Renewable Energies and Power Quality (ICREPQ’10), at Granada (Spain) on 23-25 March, 2010.
  • [4] Khalil, A. A., El-Singaby, M. (2003). Position control of sun tracking system. Midwest Symposium on Circuits and Systems, 3, 1134 – 1137, 27-30th December, 2003. DOI:10.1109/MWSCAS.2003.1562493
  • [5] Dankoff, W. Glossary of Solar Water Pumping Terms and Related Components. Available www.dankoffsolarpumps.com
  • [6] Nijegodorov, N., Devan, K. R. S., Jain, P. K., Carlsson, S. (1994). Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate variously oriented at any latitude. Renewable Energy, 4(5), 529-543. DOI: 10.1016/0960-1481(94)90215-1
  • [7] Yakup M., Malik A. Q. (2001). Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renewable Energy, 24(2), 223-234. DOI: 10.1016/S0960-1481(00)00168-3
  • [8] Gunerhan, H., Hepbasli, A. (2007). Determination of the optimum tilt angle of solar collectors for building applications. 42(2), 779-783. DOI: 10.1016/j.buildenv.2005.09.012
  • [9] Sharan, A. M., Prateek, M. (2006). Automation of minimum torque based accurate solar tracking systems using microprocessors. Journal of the Indian Institute of Science, 86(5), 415-437.
  • [10] Huynh, P. T., Cho, B. H. (1999). Design and analysis of a regulated peak-power tracking system. IEEE Transactions on Energy Conversion, 10(2), 360-367. DOI: 10.1109/60.391904
  • [11] Hiyama, T., Kouzuma, S., Imakubo, T. (1995). Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Transactions on Energy Conversion, 10(2), 360-367, 1995. DOI: 10.1109/60.391904
  • [12] Baz, A., Sabry, A., Mobarak, A., Morcos, S. (1984). On the tracking error of self-contained solar tracking system. Journal of Solar Energy, 106(4), 416-422. https://doi.org/10.1115/1.3267620
  • [13] Rustemli, S., Dincadam, F., Demirtas, M. (2010). Performance comparison of the sun tracking system and fixed system in the application of heating and lightning. The Arabian Journal for Science and Engineering, 35(28), 171-183.
  • [14] Zhang, Q., Yu, H., Zhang, Q., Zhang, Z. et al, (2015). A Solar Automatic Tracking System that Generates Power for Lighting Greenhouses. Energies, 8, 7367-7380, doi:10.3390/en8077367
  • [15] Tirmikci, C. A., Yavuz, C. (2015). Comparison of Solar Trackers and Application of a Sensor Less Dual Axis Solar Tracker. Journal of Energy and Power Engineering, 9, 556-561. Doi: 10.17265/1934-8975/2015.06.006
  • [16] Maatallah, T., El Alimi, S., Nassrallah, S. B. (2011). Performance modeling and investigation of fixed single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia. Renewable and Sustainable Energy Reviews, 15(8), 4053-4066, 2011. DOI: 10.1016/j.rser.2011.07.037
  • [17] Deepthi, S., Ponni, A., Ranjitha, R., Dhanabal, R. (2013). Comparison of Efficiencies of Single-axis Tracking System and Dual-axis Tracking System with Fixed Mount. International Journal of Engineering Science and Innovative Technology, 2(2), 425-430.
  • [18] Uebari, B.; Bere, B. S.; Komi, I. S. B.; Sunday, L. U. (2016). Design of Automatic two-axis Solar Tracker with Fuzzy Logic Controller for Maximum Power System in Nigeria. International Journal of Innovative Science, Engineering and Technology, 3(11), 329-336.
  • [19] Duffie J. A., Beckman W. A. (2006). Solar Engineering of Thermal Process. John Wiley and Sons, Inc. Hoboken, New Jersey, Third Edition, 2006. pp. 15-16.
  • [20] Duffie J. A., Beckman W. A. (1991). Solar Engineering of Thermal Process. New York, USA: Wiley-Interscience, Second Edition, 15-16.
  • [21] Kalogirous S. A. (2014). Solar Energy Engineering Process and System. Elsevier Inc. Amsterdam. Second Edition, 59-60.
  • [22] Mai S. E., Wagdy R. A., Ismail M. H., Mikail A. (2017). Design of single-axis and dual-axis tracking systems protected against high wind speed. International Journal of Scientific and Technology Research, 6(9), 84-89.
  • [23] Waziri N. H., Usman A. M., Enaburekhan J. S. (2015). Optimum Temperature and Solar Radiation Periods for Kano using Flat Plate Collector. Journal of Engineering, Design and Technology, 13(4), 570-578.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Jamilu Ya'u Muhammad 0000-0002-7627-672X

Siraj Alhassan Bu kişi benim

Ibrahim Baba Kyarı Bu kişi benim

Mohammed Abdullahi Gele Bu kişi benim

Abudharr Bello Wazırı Wazırı Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 13 Eylül 2020
Kabul Tarihi 27 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA Muhammad, J. Y., Alhassan, S., Kyarı, I. B., Gele, M. A., vd. (2020). Assessing Performance of Manually Controlled Solar Tracking System in Climate Condition of Kano, Nigeria. Journal of Investigations on Engineering and Technology, 3(2), 37-47.