Research Article
BibTex RIS Cite

Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen ve İn-vitro Biyoerişilebilirliğinin Karşılaştırılması

Year 2022, , 791 - 805, 01.06.2022
https://doi.org/10.21597/jist.1067994

Abstract

Kahve günlük yaşantımızda önemli bir yere sahip olan ve en sık tüketilen içeceklerden biridir. İçeriğindeki biyoaktif bileşenler sayesinde sağlık üzerinde antioksidan, antihipertansif, anti-inflamatuar, immünoprotektif, anti-karsinojen etkiler göstermektedir. Çalışma kapsamında, ticari olarak tüketime sunulan Espresso, Americano, Macchiato, Latte, Cappuccino ve Mocha kahve içeceklerinin antioksidan kapasite (ABTS ve DPPH Metotları) ve toplam fenolik bileşen miktarı (Folin-Ciocalteu Metodu) açısından analiz edilerek, içeceklerin biyoaktif potansiyellerinin kıyaslanması amaçlanmıştır. En yüksek değerler en yoğun kahve içeriğine sahip olan Espresso örneğinde belirlenmiş olup; ekstrakte edilebilir, hidrolize edilebilir, biyoerişilebilir fenolik fraksiyonları sırasıyla TEAKABTS sonuçlarına göre 28.15, 35.04, 30.28 μmol Troloks mL-1; TEAKDPPH sonuçlarına göre ise 14.69, 17.98, 9.84 μmol Troloks mL-1 olarak belirlenmiştir. Kahve örneklerinin içeriğindeki süt miktarı arttıkça antioksidan kapasite ve toplam fenolik bileşen değerlerinde azalma gözlemlenmiştir. Sütün buhar ile muamele edilerek köpük halinde eklenmesi, sıcak olarak eklenmesine göre nispeten daha yüksek değerler göstermiştir. Örneklerin % biyoerişilebilirlikleri ise, toplam fenolik bileşen içeriğine göre % 41-48 arasında değişmiştir.

Thanks

Çalışmanın yapılması için örneklerin teminini sağlayan, bilgi ve tecrübelerini paylaşan Burak Sinkiler’e ve Coffee Sinky (Bursa) ekibine teşekkür ederiz.

References

  • Ali M, Homann T, Khalil M, Kruse HP, Rawel H, 2013. Milk Whey Protein Modification by Coffee-Specific Phenolics: Effect on Structural and Functional Properties. Journal of Agricultural and Food Chemistry, 61(28): 6911–6920.
  • Alongi M, Calligaris S, Anese M, 2019. Fat Concentration and High-Pressure Homogenization Affect Chlorogenic Acid Bioaccessibility and α-glucosidase Inhibitory Capacity of Milk-Based Coffee Beverages. Journal of Functional Foods, 58: 130–137.
  • Amorati R, Valgimigli L, 2012. Modulation of the Antioxidant Activity of Phenols by Non-Covalent Interactions. Organic and Biomolecular Chemistry, 10(21): 4147–4158.
  • Anson NM, Selinheimo E, Havenaar R, Aura AM, Mattila I, Lehtinen P, Bast A, Poutanen K, Haenen GR, 2009. Bioprocessing of Wheat Bran Improves In Vitro Bioaccessibility and Colonic Metabolism of Phenolic Compounds. Journal of Agricultural and Food Chemistry, 57(14): 6148–6155.
  • AOAC. 1990. Official Methods of Analysis. Maryland, USA: Association of Official Analytical, Chemists International.
  • Apak R, Guclu K, Ozyurek M, Celik SE, 2008. Mechanism of Antioxidant Capacity Assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) Assay. Microchimica Acta, 160(4): 413–419.
  • Arts MJ, Haenen GR, Wilms LC, Beetstra SA, Heijnen CG, Voss HP, Bast A, 2002. Interactions Between Flavonoids and Proteins: Effect on the Total Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 50(5): 1184–1187.
  • Baruönü FÖ, Örs M, 2018. İkinci Dalga Kahve Tercihini Etkileyen Faktörler: İçtiğimiz Kahveleri Tanıyor Muyuz?. Journal of Tourism and Gastronomy Studies, 6(4): 150–173.
  • Bermúdez-Soto MJ, Tomás-Barberán FA, García-Conesa MT, 2007. Stability of Polyphenols in Chokeberry (Aronia melanocarpa) Subjected to In Vitro Gastric and Pancreatic Digestion. Food Chemistry, 102(3): 865–874.
  • Bouayed, J, Deußer, H, Hoffmann, L, Bohn T, 2012. Bioaccessible and Dialysable Polyphenols in Selected Apple Varieties Following In Vitro Digestion vs. Their Native Patterns. Food Chemistry, 131(4): 1466–1472.
  • Brand-Williams W, Cuvelier ME, Berset CLWT, 1995. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Science and Technology, 28(1): 25–30.
  • Clifford MN, Knight S, 2004. The Cinnamoyl-Amino Acid Conjugates of Green Robusta Coffee Beans. Food Chemistry, 87(3): 457–463.
  • Duarte GS, Farah A, 2011. Effect of Simultaneous Consumption of Milk and Coffee on Chlorogenic Acids’ Bioavailability in Humans. Journal of Agricultural and Food Chemistry, 59(14): 7925–7931.
  • Dupas CJ, Marsset‐Baglieri AC, Ordonaud CS, Ducept FM, Maillard MN, 2006. Coffee Antioxidant Properties: Effects of Milk Addition and Processing Conditions. Journal of Food Science, 71(3): 253–258.
  • Ekbatan SS, Sleno L, Sabally K, Khairallah J, Azadi B, Rodes L, Parakash S, Donnelly DJ, Kubow S, 2016. Biotransformation of Polyphenols in a Dynamic Multistage Gastrointestinal Model. Food Chemistry, 204: 453–462.
  • Folin O, Ciocalteu V, 1927. On Tyrosine and Tryptophane Determinations in Proteins. Journal of Biological Chemistry, 73(2): 627–650.
  • Girginol CR, 2018. Kahve Fincandan Lezzete, Oğlak Yayıncılık ve Reklamcılık Ltd. Şti., Istanbul, Türkiye,208 s. ISBN: 9789753292757.
  • Hernández-Ledesma B, Dávalos A, Bartolomé B, Amigo L, 2005. Preparation of Antioxidant Enzymatic Hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 53(3): 588–593.
  • Kaya G, Toker S, 2019. Kahve Tüketim Alışkanlıklarının İncelenmesi: İstanbul. Uluslararası Ekonomi Siyaset İnsan ve Toplum Bilimleri Dergisi, 2(3): 146–164.
  • Li T, Li X, Dai T, Hu P, Niu X, Liu C, Chen J, 2020. Binding Mechanism and Antioxidant Capacity of Selected Phenolic Acid-β-casein Complexes. Food Research International, 129: 108802.
  • Lindmark-Månsson H, Åkesson B, 2000. Antioxidative Factors in Milk. British Journal of Nutrition, 84(S1): 103–110.
  • Maier HG, Balcke C, Thies FC, 1983. Die Säuren des Kaffees. VI. Abhängigkeit des Sauren Geschmacks von pH-Wert und Säuregrad. Lebensmittelchem Gericht Chemie, 37: 81-83 (In German).
  • McClements DJ, Xiao H, 2014. Excipient Foods: Designing Food Matrices That Improve the Oral Bioavailability of Pharmaceuticals and Nutraceuticals. Food & Function, 5(7): 1320–1333. Moon JK, Yoo HS, Shibamoto T, 2009. Role of Roasting Conditions in the Level of Chlorogenic Acid Content in Coffee Beans: Correlation with Coffee Acidity. Journal of Agricultural and Food Chemistry, 57(12): 5365–5369.
  • Niseteo T, Komes D, Belščak-Cvitanović A, Horžić D, Budeč M, 2012. Bioactive Composition and Antioxidant Potential of Different Commonly Consumed Coffee Brews Affected by Their Preparation Technique and Milk Addition. Food Chemistry, 134(4): 1870–1877.
  • Otemuyiwa IO, Williams MF, Adewusi SA, 2017. Antioxidant Activity of Health Tea İnfusions and Effect of Sugar and Milk on In-Vitro Availability of Phenolics in Tea, Coffee and Cocoa Drinks. Nutrition & Food Science.
  • Pérez-Martínez M, Caemmerer B, De Peña MP, Cid C, Kroh LW, 2010. Influence of Brewing Method and Acidity Regulators on the Antioxidant Capacity of Coffee Brews. Journal of Agricultural and Food Chemistry, 58(5): 2958–2965.
  • Podio NS, López-Froilán R, Ramirez-Moreno E, Bertrand L, Baroni MV, Pérez-Rodríguez ML, Sánchez-Mata MC, Wunderlin DA, 2015. Matching In Vitro Bioaccessibility of Polyphenols and Antioxidant Capacity of Soluble Coffee by Boosted Regression Trees. Journal of Agricultural and Food Chemistry, 63(43): 9572–9582.
  • Porrini M, Riso P, 2008. Factors Influencing the Bioavailability of Antioxidants in Foods: A Critical Appraisal.
  • Prior RL, Wu X, Schaich K, 2005. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10): 4290–4302.
  • Quan W, Qie X, Chen Y, Zen M, Qin F, Chen J, He Z, 2020. Effect of Milk Addition and Processing on the Antioxidant Capacity and Phenolic Bioaccessibility of Coffee by Using an İn Vitro Gastrointestinal Digestion Model. Food Chemistry, 308: 125598.
  • Rao NZ, Fuller M, 2018. Acidity and Antioxidant Activity of Cold Brew Coffee. Scientific Reports, 8(1): 1–9.
  • Rashidinejad A, Tarhan O, Rezaei A, Capanoglu E, Boostani S, Khoshnoudi-Nia S, Samborska K, Garavand F, Shaddel R, Akbari-Alavijeh S, Jafari SM, 2021. Addition of Milk to Coffee Beverages; the Effect on Functional, Nutritional, and Sensorial Properties. Critical Reviews in Food Science and Nutrition, 1–21.
  • Rodríguez-Roque MJ, Rojas-Graü MA, Elez-Martínez P, Martín-Belloso O, 2014. In Vitro Bioaccessibility of Health-Related Compounds as Affected by the Formulation of Fruit Juice-and Milk-Based Beverages. Food Research International, 62: 771–778. Sanchez-Gonzalez I, Jiménez-Escrig A, Saura-Calixto F, 2005. In Vitro Antioxidant Activity of Coffees Brewed Using Different Procedures (Italian, espresso and filter). Food Chemistry, 90(1-2): 133–139.
  • Sanchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA, 2013. The Folin-Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Analytical Methods, 5(21): 5990–5999.
  • Shahidi F, Zhong Y, 2015. Measurement of Antioxidant Activity. Journal of Functional Foods, 18: 757–781.
  • Sharma V, Kumar HV, Rao, LJM, 2008. Influence of Milk and Sugar on Antioxidant Potential of Black Tea. Food Research International, 41(2): 124–129.
  • Stojadinovic M, Radosavljevic J, Ognjenovic J, Vesic J, Prodic I, Stanic-Vucinic D, Velickovic TC, 2013. Binding Affinity Between Dietary Polyphenols and β-lactoglobulin Negatively Correlates with the Protein Susceptibility to Digestion and Total Antioxidant Activity of Complexes Formed. Food Chemistry, 136(3-4): 1263–1271.
  • Tagliazucchi D, Helal A, Verzelloni E, Conte A, 2012. The Type and Concentration of Milk Increase The In Vitro Bioaccessibility of Coffee Chlorogenic Acids. Journal of Agricultural and Food Chemistry, 60(44): 11056–11064.
  • Vignoli JA, Bassoli DG, Benassi MDT, 2011. Antioxidant Activity, Polyphenols, Caffeine and Melanoidins in Soluble Coffee: The Influence of Processing Conditions and Raw Material. Food Chemistry, 124(3): 863–868.
  • Vitali D, Dragojević IV, Šebečić B, 2009. Effects of Incorporation of Integral Raw Materials and Dietary Fibre on the Selected Nutritional and Functional Properties of Biscuits. Food Chemistry, 114(4): 1462–1469.
  • Yildirim-Elikoglu S, Erdem YK, 2018. Interactions Between Milk Proteins and Polyphenols: Binding Mechanisms, Related Changes, and the Future Trends in the Dairy Industry. Food Reviews International, 34(7): 665–697.
  • Yuksel Z, Avci E, Erdem YK, 2010. Characterization of Binding Interactions Between Green Tea Flavanoids and Milk Proteins. Food Chemistry, 121(2): 450–456.
  • Zulueta A, Maurizi A, Frígola A, Esteve MJ, Coli R, Burini G, 2009. Antioxidant Capacity of Cow Milk, Whey and Deproteinized Milk. International Dairy Journal, 19(6-7): 380–385.

Comparison of Antioxidant Capacity, Total Phenolic Content and In-vitro Bioaccessibility of Espresso Based Coffee Beverages

Year 2022, , 791 - 805, 01.06.2022
https://doi.org/10.21597/jist.1067994

Abstract

Coffee is one of the most frequently consumed beverage that has an important place in our daily life. Owing to bioactive components in its content, it has antioxidant, antihypertensive, anti-inflammatory, immunoprotective, anti-carcinogenic effects on health. Within the scope of the study, it is aimed to compare the bioactive potential of commercially available Espresso, Americano, Macchiato, Latte, Cappuccino and Mocha coffee drinks by analyzing the antioxidant capacity (ABTS and DPPH Methods) and the total phenolic compound (Folin-Ciocalteu Method). The highest values were determined in the Espresso sample, which has the most intense coffee content; extractable, hydrolyzable, bioaccessible phenolic fractions were determined respectively as 28.15, 35.04, 30.28 μmol Troloks mL-1 according to TEACABTS and 14.69, 17.98, 9.84 μmol Troloks mL-1 according to TEACDPPH. By the increase of the milk amount in coffee samples, decrease was observed in the antioxidant capacity and total phenolic content results. Addition of steamed milk by steaming treatment showed relatively higher values compared to adding milk as hot. The bioaccessibility % of the samples varied between 41-48 % according to total phenolic content.

References

  • Ali M, Homann T, Khalil M, Kruse HP, Rawel H, 2013. Milk Whey Protein Modification by Coffee-Specific Phenolics: Effect on Structural and Functional Properties. Journal of Agricultural and Food Chemistry, 61(28): 6911–6920.
  • Alongi M, Calligaris S, Anese M, 2019. Fat Concentration and High-Pressure Homogenization Affect Chlorogenic Acid Bioaccessibility and α-glucosidase Inhibitory Capacity of Milk-Based Coffee Beverages. Journal of Functional Foods, 58: 130–137.
  • Amorati R, Valgimigli L, 2012. Modulation of the Antioxidant Activity of Phenols by Non-Covalent Interactions. Organic and Biomolecular Chemistry, 10(21): 4147–4158.
  • Anson NM, Selinheimo E, Havenaar R, Aura AM, Mattila I, Lehtinen P, Bast A, Poutanen K, Haenen GR, 2009. Bioprocessing of Wheat Bran Improves In Vitro Bioaccessibility and Colonic Metabolism of Phenolic Compounds. Journal of Agricultural and Food Chemistry, 57(14): 6148–6155.
  • AOAC. 1990. Official Methods of Analysis. Maryland, USA: Association of Official Analytical, Chemists International.
  • Apak R, Guclu K, Ozyurek M, Celik SE, 2008. Mechanism of Antioxidant Capacity Assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) Assay. Microchimica Acta, 160(4): 413–419.
  • Arts MJ, Haenen GR, Wilms LC, Beetstra SA, Heijnen CG, Voss HP, Bast A, 2002. Interactions Between Flavonoids and Proteins: Effect on the Total Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 50(5): 1184–1187.
  • Baruönü FÖ, Örs M, 2018. İkinci Dalga Kahve Tercihini Etkileyen Faktörler: İçtiğimiz Kahveleri Tanıyor Muyuz?. Journal of Tourism and Gastronomy Studies, 6(4): 150–173.
  • Bermúdez-Soto MJ, Tomás-Barberán FA, García-Conesa MT, 2007. Stability of Polyphenols in Chokeberry (Aronia melanocarpa) Subjected to In Vitro Gastric and Pancreatic Digestion. Food Chemistry, 102(3): 865–874.
  • Bouayed, J, Deußer, H, Hoffmann, L, Bohn T, 2012. Bioaccessible and Dialysable Polyphenols in Selected Apple Varieties Following In Vitro Digestion vs. Their Native Patterns. Food Chemistry, 131(4): 1466–1472.
  • Brand-Williams W, Cuvelier ME, Berset CLWT, 1995. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Science and Technology, 28(1): 25–30.
  • Clifford MN, Knight S, 2004. The Cinnamoyl-Amino Acid Conjugates of Green Robusta Coffee Beans. Food Chemistry, 87(3): 457–463.
  • Duarte GS, Farah A, 2011. Effect of Simultaneous Consumption of Milk and Coffee on Chlorogenic Acids’ Bioavailability in Humans. Journal of Agricultural and Food Chemistry, 59(14): 7925–7931.
  • Dupas CJ, Marsset‐Baglieri AC, Ordonaud CS, Ducept FM, Maillard MN, 2006. Coffee Antioxidant Properties: Effects of Milk Addition and Processing Conditions. Journal of Food Science, 71(3): 253–258.
  • Ekbatan SS, Sleno L, Sabally K, Khairallah J, Azadi B, Rodes L, Parakash S, Donnelly DJ, Kubow S, 2016. Biotransformation of Polyphenols in a Dynamic Multistage Gastrointestinal Model. Food Chemistry, 204: 453–462.
  • Folin O, Ciocalteu V, 1927. On Tyrosine and Tryptophane Determinations in Proteins. Journal of Biological Chemistry, 73(2): 627–650.
  • Girginol CR, 2018. Kahve Fincandan Lezzete, Oğlak Yayıncılık ve Reklamcılık Ltd. Şti., Istanbul, Türkiye,208 s. ISBN: 9789753292757.
  • Hernández-Ledesma B, Dávalos A, Bartolomé B, Amigo L, 2005. Preparation of Antioxidant Enzymatic Hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 53(3): 588–593.
  • Kaya G, Toker S, 2019. Kahve Tüketim Alışkanlıklarının İncelenmesi: İstanbul. Uluslararası Ekonomi Siyaset İnsan ve Toplum Bilimleri Dergisi, 2(3): 146–164.
  • Li T, Li X, Dai T, Hu P, Niu X, Liu C, Chen J, 2020. Binding Mechanism and Antioxidant Capacity of Selected Phenolic Acid-β-casein Complexes. Food Research International, 129: 108802.
  • Lindmark-Månsson H, Åkesson B, 2000. Antioxidative Factors in Milk. British Journal of Nutrition, 84(S1): 103–110.
  • Maier HG, Balcke C, Thies FC, 1983. Die Säuren des Kaffees. VI. Abhängigkeit des Sauren Geschmacks von pH-Wert und Säuregrad. Lebensmittelchem Gericht Chemie, 37: 81-83 (In German).
  • McClements DJ, Xiao H, 2014. Excipient Foods: Designing Food Matrices That Improve the Oral Bioavailability of Pharmaceuticals and Nutraceuticals. Food & Function, 5(7): 1320–1333. Moon JK, Yoo HS, Shibamoto T, 2009. Role of Roasting Conditions in the Level of Chlorogenic Acid Content in Coffee Beans: Correlation with Coffee Acidity. Journal of Agricultural and Food Chemistry, 57(12): 5365–5369.
  • Niseteo T, Komes D, Belščak-Cvitanović A, Horžić D, Budeč M, 2012. Bioactive Composition and Antioxidant Potential of Different Commonly Consumed Coffee Brews Affected by Their Preparation Technique and Milk Addition. Food Chemistry, 134(4): 1870–1877.
  • Otemuyiwa IO, Williams MF, Adewusi SA, 2017. Antioxidant Activity of Health Tea İnfusions and Effect of Sugar and Milk on In-Vitro Availability of Phenolics in Tea, Coffee and Cocoa Drinks. Nutrition & Food Science.
  • Pérez-Martínez M, Caemmerer B, De Peña MP, Cid C, Kroh LW, 2010. Influence of Brewing Method and Acidity Regulators on the Antioxidant Capacity of Coffee Brews. Journal of Agricultural and Food Chemistry, 58(5): 2958–2965.
  • Podio NS, López-Froilán R, Ramirez-Moreno E, Bertrand L, Baroni MV, Pérez-Rodríguez ML, Sánchez-Mata MC, Wunderlin DA, 2015. Matching In Vitro Bioaccessibility of Polyphenols and Antioxidant Capacity of Soluble Coffee by Boosted Regression Trees. Journal of Agricultural and Food Chemistry, 63(43): 9572–9582.
  • Porrini M, Riso P, 2008. Factors Influencing the Bioavailability of Antioxidants in Foods: A Critical Appraisal.
  • Prior RL, Wu X, Schaich K, 2005. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10): 4290–4302.
  • Quan W, Qie X, Chen Y, Zen M, Qin F, Chen J, He Z, 2020. Effect of Milk Addition and Processing on the Antioxidant Capacity and Phenolic Bioaccessibility of Coffee by Using an İn Vitro Gastrointestinal Digestion Model. Food Chemistry, 308: 125598.
  • Rao NZ, Fuller M, 2018. Acidity and Antioxidant Activity of Cold Brew Coffee. Scientific Reports, 8(1): 1–9.
  • Rashidinejad A, Tarhan O, Rezaei A, Capanoglu E, Boostani S, Khoshnoudi-Nia S, Samborska K, Garavand F, Shaddel R, Akbari-Alavijeh S, Jafari SM, 2021. Addition of Milk to Coffee Beverages; the Effect on Functional, Nutritional, and Sensorial Properties. Critical Reviews in Food Science and Nutrition, 1–21.
  • Rodríguez-Roque MJ, Rojas-Graü MA, Elez-Martínez P, Martín-Belloso O, 2014. In Vitro Bioaccessibility of Health-Related Compounds as Affected by the Formulation of Fruit Juice-and Milk-Based Beverages. Food Research International, 62: 771–778. Sanchez-Gonzalez I, Jiménez-Escrig A, Saura-Calixto F, 2005. In Vitro Antioxidant Activity of Coffees Brewed Using Different Procedures (Italian, espresso and filter). Food Chemistry, 90(1-2): 133–139.
  • Sanchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA, 2013. The Folin-Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Analytical Methods, 5(21): 5990–5999.
  • Shahidi F, Zhong Y, 2015. Measurement of Antioxidant Activity. Journal of Functional Foods, 18: 757–781.
  • Sharma V, Kumar HV, Rao, LJM, 2008. Influence of Milk and Sugar on Antioxidant Potential of Black Tea. Food Research International, 41(2): 124–129.
  • Stojadinovic M, Radosavljevic J, Ognjenovic J, Vesic J, Prodic I, Stanic-Vucinic D, Velickovic TC, 2013. Binding Affinity Between Dietary Polyphenols and β-lactoglobulin Negatively Correlates with the Protein Susceptibility to Digestion and Total Antioxidant Activity of Complexes Formed. Food Chemistry, 136(3-4): 1263–1271.
  • Tagliazucchi D, Helal A, Verzelloni E, Conte A, 2012. The Type and Concentration of Milk Increase The In Vitro Bioaccessibility of Coffee Chlorogenic Acids. Journal of Agricultural and Food Chemistry, 60(44): 11056–11064.
  • Vignoli JA, Bassoli DG, Benassi MDT, 2011. Antioxidant Activity, Polyphenols, Caffeine and Melanoidins in Soluble Coffee: The Influence of Processing Conditions and Raw Material. Food Chemistry, 124(3): 863–868.
  • Vitali D, Dragojević IV, Šebečić B, 2009. Effects of Incorporation of Integral Raw Materials and Dietary Fibre on the Selected Nutritional and Functional Properties of Biscuits. Food Chemistry, 114(4): 1462–1469.
  • Yildirim-Elikoglu S, Erdem YK, 2018. Interactions Between Milk Proteins and Polyphenols: Binding Mechanisms, Related Changes, and the Future Trends in the Dairy Industry. Food Reviews International, 34(7): 665–697.
  • Yuksel Z, Avci E, Erdem YK, 2010. Characterization of Binding Interactions Between Green Tea Flavanoids and Milk Proteins. Food Chemistry, 121(2): 450–456.
  • Zulueta A, Maurizi A, Frígola A, Esteve MJ, Coli R, Burini G, 2009. Antioxidant Capacity of Cow Milk, Whey and Deproteinized Milk. International Dairy Journal, 19(6-7): 380–385.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Gıda Mühendisliği / Food Engineering
Authors

Elif Yıldız 0000-0003-1356-9012

Publication Date June 1, 2022
Submission Date February 3, 2022
Acceptance Date April 22, 2022
Published in Issue Year 2022

Cite

APA Yıldız, E. (2022). Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen ve İn-vitro Biyoerişilebilirliğinin Karşılaştırılması. Journal of the Institute of Science and Technology, 12(2), 791-805. https://doi.org/10.21597/jist.1067994
AMA Yıldız E. Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen ve İn-vitro Biyoerişilebilirliğinin Karşılaştırılması. J. Inst. Sci. and Tech. June 2022;12(2):791-805. doi:10.21597/jist.1067994
Chicago Yıldız, Elif. “Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen Ve İn-Vitro Biyoerişilebilirliğinin Karşılaştırılması”. Journal of the Institute of Science and Technology 12, no. 2 (June 2022): 791-805. https://doi.org/10.21597/jist.1067994.
EndNote Yıldız E (June 1, 2022) Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen ve İn-vitro Biyoerişilebilirliğinin Karşılaştırılması. Journal of the Institute of Science and Technology 12 2 791–805.
IEEE E. Yıldız, “Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen ve İn-vitro Biyoerişilebilirliğinin Karşılaştırılması”, J. Inst. Sci. and Tech., vol. 12, no. 2, pp. 791–805, 2022, doi: 10.21597/jist.1067994.
ISNAD Yıldız, Elif. “Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen Ve İn-Vitro Biyoerişilebilirliğinin Karşılaştırılması”. Journal of the Institute of Science and Technology 12/2 (June 2022), 791-805. https://doi.org/10.21597/jist.1067994.
JAMA Yıldız E. Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen ve İn-vitro Biyoerişilebilirliğinin Karşılaştırılması. J. Inst. Sci. and Tech. 2022;12:791–805.
MLA Yıldız, Elif. “Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen Ve İn-Vitro Biyoerişilebilirliğinin Karşılaştırılması”. Journal of the Institute of Science and Technology, vol. 12, no. 2, 2022, pp. 791-05, doi:10.21597/jist.1067994.
Vancouver Yıldız E. Espresso İçeren Kahve İçeceklerinin Antioksidan Kapasite, Toplam Fenolik Bileşen ve İn-vitro Biyoerişilebilirliğinin Karşılaştırılması. J. Inst. Sci. and Tech. 2022;12(2):791-805.