Araştırma Makalesi
BibTex RIS Kaynak Göster

Lorentz-Darboux Çatısına Göre k ve ( , ) k m − tip Slant Helisler

Yıl 2023, , 1237 - 1246, 01.06.2023
https://doi.org/10.21597/jist.1205226

Öz

Helis kavramı, mühendislikten fiziğe kadar kapsamlı alanlardaki kullanımları
nedeniyle diferansiyel geometri için çok önemlidir. Bu araştırmada, dört boyutlu
Lorentz-Darboux çatısına göre k ve ( ) , km− tip slant helisler verilmiş ve teoremler
ispatlanmıştır.

Kaynakça

  • Bruce, J. W. (1984). Curves and singularities : A geometrical introduction to singularity theory. Cambridge University Press, October 07, 2022. URL: http://archive.org/details/curvessingularit0000bruc. New York.
  • Hananoi, S., Ito, N., Izumiya, S. (2015). Spherical Darboux images of curves on surfaces. Beitr. Zur Algebra Geom. Contrib. Algebra Geom. 56. URL: https://doi.org/10.1007/s13366-015-0240-z.
  • Hayashi, R., Izumiya, S., Sato, T. (2017). Focal Surfaces And Evolutes Of Curves in Hyperbolic Space. Commun. Korean Math. Soc., 32(1), 147-163.
  • Izumiya, S., Nabarro, A. C,, Sacramento, A. J. (2017). Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. J. Singul. URL: https://doi.org/10.5427/jsing.2017.16h.
  • Izumiya, S., Nabarro, A. C., Sacramento, A. J. (2015). Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space. J. Geom. Phys., 97, 105-118.
  • Izumiya, S., Saji, K., Takahashi, M. (2010). Horospherical flat surfaces in Hyperbolic 3-space. J. Math. Soc. Jpn., 62(3). URL: https://doi.org/10.2969/jmsj/06230789.
  • Izumiya, S., Sato, T. (2013). Lightlike hypersurfaces along spacelike submanifolds in Minkowski space–time. J. Geom. Phys., 71, 30-52.
  • Nabarro, A. C., Sacramento, A. J. (2015). Focal set of curves in the Minkowski space near lightlike points. arXiv, 27. URL: http://arxiv.org/abs/1507.07957.
  • Sato, T. (2012). Pseudo-spherical evolutes of curves on a spacelike surface in three dimensional Lorentz–Minkowski space. J. Geom., 103(2), 319-331.
  • Ali, A. T., López, R., Turgut, M. (2012). k-type partially null and pseudo null slant helices in Minkowski 4-space. Math. Commun., 17(1), 93-103.
  • Bulut, F., Bektaş, M. (2020). Special helices on equiform differential geometry of spacelike curves in Minkowski space-time. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(2), 1045-1056.
  • Hacısalihoğlu, H. H. (1983). Diferansiyel Geometri. İnönü Üniversitesi Fen Edebiyat Fakültesi Yayınları. Ankara.
  • O’Neill, B. (1983). Semi-Riemannian Geometry With Applications to Relativity. Academic Press.
  • Ratcliffe, J. G. (2019). Euclidean Geometry. Springer International Publishing, 1-33. doi: 10.1007/978-3-030-31597-9_1.
  • Izumiya, S., Nabarro, A. C., Sacramento, A. J. (2021). Curves in a spacelike hypersurface in Minkowski space-time. Osaka J. Math., 58(4), 947-966.
  • Yilmaz, M. Y., Bektaş, M. (2018). Slant helices of type in . Acta Univ. Sapientiae, Mathematica, 10(2), 395-401.

k and ( , ) km − type Slant Helices According to the Lorentz-Darboux Frame

Yıl 2023, , 1237 - 1246, 01.06.2023
https://doi.org/10.21597/jist.1205226

Öz

The helix notion is a crucial one for differential geometry due to its comprehensive
uses in fields ranging from engineering to physics. In this research, k and ( ) , km−
type slant helices are given according to the four-dimensional Lorentz-Darboux
frame and theorems are proved.

Kaynakça

  • Bruce, J. W. (1984). Curves and singularities : A geometrical introduction to singularity theory. Cambridge University Press, October 07, 2022. URL: http://archive.org/details/curvessingularit0000bruc. New York.
  • Hananoi, S., Ito, N., Izumiya, S. (2015). Spherical Darboux images of curves on surfaces. Beitr. Zur Algebra Geom. Contrib. Algebra Geom. 56. URL: https://doi.org/10.1007/s13366-015-0240-z.
  • Hayashi, R., Izumiya, S., Sato, T. (2017). Focal Surfaces And Evolutes Of Curves in Hyperbolic Space. Commun. Korean Math. Soc., 32(1), 147-163.
  • Izumiya, S., Nabarro, A. C,, Sacramento, A. J. (2017). Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. J. Singul. URL: https://doi.org/10.5427/jsing.2017.16h.
  • Izumiya, S., Nabarro, A. C., Sacramento, A. J. (2015). Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space. J. Geom. Phys., 97, 105-118.
  • Izumiya, S., Saji, K., Takahashi, M. (2010). Horospherical flat surfaces in Hyperbolic 3-space. J. Math. Soc. Jpn., 62(3). URL: https://doi.org/10.2969/jmsj/06230789.
  • Izumiya, S., Sato, T. (2013). Lightlike hypersurfaces along spacelike submanifolds in Minkowski space–time. J. Geom. Phys., 71, 30-52.
  • Nabarro, A. C., Sacramento, A. J. (2015). Focal set of curves in the Minkowski space near lightlike points. arXiv, 27. URL: http://arxiv.org/abs/1507.07957.
  • Sato, T. (2012). Pseudo-spherical evolutes of curves on a spacelike surface in three dimensional Lorentz–Minkowski space. J. Geom., 103(2), 319-331.
  • Ali, A. T., López, R., Turgut, M. (2012). k-type partially null and pseudo null slant helices in Minkowski 4-space. Math. Commun., 17(1), 93-103.
  • Bulut, F., Bektaş, M. (2020). Special helices on equiform differential geometry of spacelike curves in Minkowski space-time. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(2), 1045-1056.
  • Hacısalihoğlu, H. H. (1983). Diferansiyel Geometri. İnönü Üniversitesi Fen Edebiyat Fakültesi Yayınları. Ankara.
  • O’Neill, B. (1983). Semi-Riemannian Geometry With Applications to Relativity. Academic Press.
  • Ratcliffe, J. G. (2019). Euclidean Geometry. Springer International Publishing, 1-33. doi: 10.1007/978-3-030-31597-9_1.
  • Izumiya, S., Nabarro, A. C., Sacramento, A. J. (2021). Curves in a spacelike hypersurface in Minkowski space-time. Osaka J. Math., 58(4), 947-966.
  • Yilmaz, M. Y., Bektaş, M. (2018). Slant helices of type in . Acta Univ. Sapientiae, Mathematica, 10(2), 395-401.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Fatma Bulut 0000-0002-7684-6796

Alisami Eker 0000-0002-9813-0369

Erken Görünüm Tarihi 27 Mayıs 2023
Yayımlanma Tarihi 1 Haziran 2023
Gönderilme Tarihi 15 Kasım 2022
Kabul Tarihi 18 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Bulut, F., & Eker, A. (2023). Lorentz-Darboux Çatısına Göre k ve ( , ) k m − tip Slant Helisler. Journal of the Institute of Science and Technology, 13(2), 1237-1246. https://doi.org/10.21597/jist.1205226
AMA Bulut F, Eker A. Lorentz-Darboux Çatısına Göre k ve ( , ) k m − tip Slant Helisler. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2023;13(2):1237-1246. doi:10.21597/jist.1205226
Chicago Bulut, Fatma, ve Alisami Eker. “Lorentz-Darboux Çatısına Göre K Ve ( , ) K M − Tip Slant Helisler”. Journal of the Institute of Science and Technology 13, sy. 2 (Haziran 2023): 1237-46. https://doi.org/10.21597/jist.1205226.
EndNote Bulut F, Eker A (01 Haziran 2023) Lorentz-Darboux Çatısına Göre k ve ( , ) k m − tip Slant Helisler. Journal of the Institute of Science and Technology 13 2 1237–1246.
IEEE F. Bulut ve A. Eker, “Lorentz-Darboux Çatısına Göre k ve ( , ) k m − tip Slant Helisler”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 2, ss. 1237–1246, 2023, doi: 10.21597/jist.1205226.
ISNAD Bulut, Fatma - Eker, Alisami. “Lorentz-Darboux Çatısına Göre K Ve ( , ) K M − Tip Slant Helisler”. Journal of the Institute of Science and Technology 13/2 (Haziran 2023), 1237-1246. https://doi.org/10.21597/jist.1205226.
JAMA Bulut F, Eker A. Lorentz-Darboux Çatısına Göre k ve ( , ) k m − tip Slant Helisler. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1237–1246.
MLA Bulut, Fatma ve Alisami Eker. “Lorentz-Darboux Çatısına Göre K Ve ( , ) K M − Tip Slant Helisler”. Journal of the Institute of Science and Technology, c. 13, sy. 2, 2023, ss. 1237-46, doi:10.21597/jist.1205226.
Vancouver Bulut F, Eker A. Lorentz-Darboux Çatısına Göre k ve ( , ) k m − tip Slant Helisler. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(2):1237-46.