Araştırma Makalesi
BibTex RIS Kaynak Göster

Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells

Yıl 2023, , 1916 - 1925, 01.09.2023
https://doi.org/10.21597/jist.1249897

Öz

Carbon Nanodots (CDs)-modified chitosan and ginger (ginger/chitosan@CD) based biocompatible substrate was built with the purpose of assessing antiproliferation effect on prostate cancer cell line (PC-3), human prostate adenocarcinoma cell line (LNCaP), and breast cancer cell line (MCF-7). CDs were fabricated through a solvothermal synhesis process, and characterized with TEM, SERS, and UV-vis spectroscopy. In this study, the cytotoxic impact of ginger/chitosan CD, which was synthesized for the first time, was evaluated as a function of both dose (maximum concentration 500 μg/mL) and time (in 24 and 48 hours) in cancer cell lines by XTT assay. After 48 hours, the ginger/chitosan@CD combination was found to have a 50% inhibitory concentration (IC50) of 178.08 μg/mL in the PC-3 cell line, 246.44 μg/mL in the LNCaP prostate cancer cells, and 345.74 μg/mL in the MCF-7. Cancer cell proliferation was efficiently suppressed by the ginger/chitosan@CDs.

Kaynakça

  • Alur, İ., Dodurga, Y., Seçme, M., Elmas, L., Bağcı, G., Gökşin, İ., & Avcı, Ç. B. (2016). Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells. Gene, 585(2), 241-246.
  • Baker, S. N., & Baker, G. A. (2010). Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie International Edition, 49(38), 6726-6744.
  • Bhattarai, N., Gunn, J., & Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews, 62(1), 83-99.
  • Brindhadevi, K., Garalleh, H. A., Alalawi, A., Al-Sarayreh, E., & Pugazhendhi, A. (2023). Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochemical Engineering Journal, 108828.
  • Builders, P. F., & Arhewoh, M. I. (2016). Pharmaceutical applications of native starch in conventional drug delivery. Starch‐Stärke, 68(9-10), 864-873.
  • Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., . . . Murray, D. (2007). Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129(37), 11318-11319.
  • Chen, C.-K., Wang, Q., Jones, C. H., Yu, Y., Zhang, H., Law, W.-C., . . . Pfeifer, B. A. (2014). Synthesis of pH-responsive chitosan nanocapsules for the controlled delivery of doxorubicin. Langmuir, 30(14), 4111-4119.
  • Chen, R., Zheng, X., Qian, H., Wang, X., Wang, J., & Jiang, X. (2013). Combined near-IR photothermal therapy and chemotherapy using gold-nanorod/chitosan hybrid nanospheres to enhance the antitumor effect. Biomaterials science, 1(3), 285-293.
  • Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chemistry of Materials, 22(21), 5895-5899.
  • Ge, J., Jia, Q., Liu, W., Guo, L., Liu, Q., Lan, M., . . . Wang, P. (2015). Red‐emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Advanced materials, 27(28), 4169-4177.
  • Huang, X., Yang, L., Hao, S., Zheng, B., Yan, L., Qu, F., . . . Sun, X. (2017). N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 4(3), 537-540.
  • Jung, N., Kim, S. M., Kang, D. H., Chung, D. Y., Kang, Y. S., Chung, Y.-H., . . . Sung, Y.-E. (2013). High-performance hybrid catalyst with selectively functionalized carbon by temperature-directed switchable polymer. Chemistry of Materials, 25(9), 1526-1532.
  • Li, C.-L., Ou, C.-M., Huang, C.-C., Wu, W.-C., Chen, Y.-P., Lin, T.-E., . . . Zhou, H.-C. (2014). Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B, 2(28), 4564-4571. Li, X., Rui, M., Song, J., Shen, Z., & Zeng, H. (2015). Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Advanced Functional Materials, 25(31), 4929-4947.
  • Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381.
  • Liu, H., Ye, T., & Mao, C. (2007). Fluorescent carbon nanoparticles derived from candle soot. Angewandte chemie, 119(34), 6593-6595.
  • Liu, M., Xu, Y., Niu, F., Gooding, J. J., & Liu, J. (2016). Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, 141(9), 2657-2664.
  • Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., . . . Sun, X. (2012). Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Advanced materials, 24(15), 2037-2041.
  • Ma, Y., Dai, J., Wu, L., Fang, G., & Guo, Z. (2017). Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin. Polymer, 114, 113-121.
  • Mohammadi, S., Mohammadi, S., & Salimi, A. (2021). A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta, 224, 121895.
  • Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical communications, 48(70), 8835-8837.
  • Sarkar, T., Bohidar, H., & Solanki, P. R. (2018). Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International journal of biological macromolecules, 109, 687-697.
  • Shao, L., Chang, X., Zhang, Y., Huang, Y., Yao, Y., & Guo, Z. (2013). Graphene oxide cross-linked chitosan nanocomposite membrane. Applied Surface Science, 280, 989-992. Shukla, Y., & Singh, M. (2007). Cancer preventive properties of ginger: a brief review. Food and chemical toxicology, 45(5), 683-690.
  • Stepanidenko, E. A., Ushakova, E. V., Fedorov, A. V., & Rogach, A. L. (2021). Applications of carbon dots in optoelectronics. Nanomaterials, 11(2), 364.
  • Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., . . . Wang, H. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757.
  • Wang, H., Di, J., Sun, Y., Fu, J., Wei, Z., Matsui, H., . . . Zhou, S. (2015). Biocompatible PEG‐chitosan@ carbon dots hybrid nanogels for two‐photon fluorescence imaging, near‐infrared light/pH dual‐responsive drug carrier, and synergistic therapy. Advanced Functional Materials, 25(34), 5537-5547.
  • Wang, H., Mukherjee, S., Yi, J., Banerjee, P., Chen, Q., & Zhou, S. (2017). Biocompatible chitosan–carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal–chemo therapy. ACS applied materials & interfaces, 9(22), 18639-18649.
  • Wang, H., Revia, M. R., Wang, K., Kant, M. R. J., Mu, Q., Gai, Z., . . . Zhang, M. (2017). Paramagnetic properties of metal-free boron-doped graphene quantum dots and their application for safe magnetic resonance imaging. Advanced Materials (Deerfield Beach, Fla.), 29(11).
  • Wang, J., Wang, C. F., & Chen, S. (2012). Amphiphilic egg‐derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angewandte Chemie International Edition, 51(37), 9297-9301.
  • Xu, J., Miao, Y., Zheng, J., Wang, H., Yang, Y., & Liu, X. (2018). Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 10(23), 11211-11221.
  • Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
  • Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., & Liu, W. (2012). Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical communications, 48(64), 7955-7957.
  • Zhang, S., Pu, Q., Liu, P., Sun, Q., & Su, Z. (2002). Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation. Analytica Chimica Acta, 452(2), 223-230.
  • Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., & Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical communications(41), 5116-5118.
Yıl 2023, , 1916 - 1925, 01.09.2023
https://doi.org/10.21597/jist.1249897

Öz

Kaynakça

  • Alur, İ., Dodurga, Y., Seçme, M., Elmas, L., Bağcı, G., Gökşin, İ., & Avcı, Ç. B. (2016). Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells. Gene, 585(2), 241-246.
  • Baker, S. N., & Baker, G. A. (2010). Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie International Edition, 49(38), 6726-6744.
  • Bhattarai, N., Gunn, J., & Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews, 62(1), 83-99.
  • Brindhadevi, K., Garalleh, H. A., Alalawi, A., Al-Sarayreh, E., & Pugazhendhi, A. (2023). Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochemical Engineering Journal, 108828.
  • Builders, P. F., & Arhewoh, M. I. (2016). Pharmaceutical applications of native starch in conventional drug delivery. Starch‐Stärke, 68(9-10), 864-873.
  • Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., . . . Murray, D. (2007). Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129(37), 11318-11319.
  • Chen, C.-K., Wang, Q., Jones, C. H., Yu, Y., Zhang, H., Law, W.-C., . . . Pfeifer, B. A. (2014). Synthesis of pH-responsive chitosan nanocapsules for the controlled delivery of doxorubicin. Langmuir, 30(14), 4111-4119.
  • Chen, R., Zheng, X., Qian, H., Wang, X., Wang, J., & Jiang, X. (2013). Combined near-IR photothermal therapy and chemotherapy using gold-nanorod/chitosan hybrid nanospheres to enhance the antitumor effect. Biomaterials science, 1(3), 285-293.
  • Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chemistry of Materials, 22(21), 5895-5899.
  • Ge, J., Jia, Q., Liu, W., Guo, L., Liu, Q., Lan, M., . . . Wang, P. (2015). Red‐emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Advanced materials, 27(28), 4169-4177.
  • Huang, X., Yang, L., Hao, S., Zheng, B., Yan, L., Qu, F., . . . Sun, X. (2017). N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 4(3), 537-540.
  • Jung, N., Kim, S. M., Kang, D. H., Chung, D. Y., Kang, Y. S., Chung, Y.-H., . . . Sung, Y.-E. (2013). High-performance hybrid catalyst with selectively functionalized carbon by temperature-directed switchable polymer. Chemistry of Materials, 25(9), 1526-1532.
  • Li, C.-L., Ou, C.-M., Huang, C.-C., Wu, W.-C., Chen, Y.-P., Lin, T.-E., . . . Zhou, H.-C. (2014). Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B, 2(28), 4564-4571. Li, X., Rui, M., Song, J., Shen, Z., & Zeng, H. (2015). Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Advanced Functional Materials, 25(31), 4929-4947.
  • Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381.
  • Liu, H., Ye, T., & Mao, C. (2007). Fluorescent carbon nanoparticles derived from candle soot. Angewandte chemie, 119(34), 6593-6595.
  • Liu, M., Xu, Y., Niu, F., Gooding, J. J., & Liu, J. (2016). Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, 141(9), 2657-2664.
  • Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., . . . Sun, X. (2012). Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Advanced materials, 24(15), 2037-2041.
  • Ma, Y., Dai, J., Wu, L., Fang, G., & Guo, Z. (2017). Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin. Polymer, 114, 113-121.
  • Mohammadi, S., Mohammadi, S., & Salimi, A. (2021). A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta, 224, 121895.
  • Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical communications, 48(70), 8835-8837.
  • Sarkar, T., Bohidar, H., & Solanki, P. R. (2018). Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International journal of biological macromolecules, 109, 687-697.
  • Shao, L., Chang, X., Zhang, Y., Huang, Y., Yao, Y., & Guo, Z. (2013). Graphene oxide cross-linked chitosan nanocomposite membrane. Applied Surface Science, 280, 989-992. Shukla, Y., & Singh, M. (2007). Cancer preventive properties of ginger: a brief review. Food and chemical toxicology, 45(5), 683-690.
  • Stepanidenko, E. A., Ushakova, E. V., Fedorov, A. V., & Rogach, A. L. (2021). Applications of carbon dots in optoelectronics. Nanomaterials, 11(2), 364.
  • Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., . . . Wang, H. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757.
  • Wang, H., Di, J., Sun, Y., Fu, J., Wei, Z., Matsui, H., . . . Zhou, S. (2015). Biocompatible PEG‐chitosan@ carbon dots hybrid nanogels for two‐photon fluorescence imaging, near‐infrared light/pH dual‐responsive drug carrier, and synergistic therapy. Advanced Functional Materials, 25(34), 5537-5547.
  • Wang, H., Mukherjee, S., Yi, J., Banerjee, P., Chen, Q., & Zhou, S. (2017). Biocompatible chitosan–carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal–chemo therapy. ACS applied materials & interfaces, 9(22), 18639-18649.
  • Wang, H., Revia, M. R., Wang, K., Kant, M. R. J., Mu, Q., Gai, Z., . . . Zhang, M. (2017). Paramagnetic properties of metal-free boron-doped graphene quantum dots and their application for safe magnetic resonance imaging. Advanced Materials (Deerfield Beach, Fla.), 29(11).
  • Wang, J., Wang, C. F., & Chen, S. (2012). Amphiphilic egg‐derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angewandte Chemie International Edition, 51(37), 9297-9301.
  • Xu, J., Miao, Y., Zheng, J., Wang, H., Yang, Y., & Liu, X. (2018). Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 10(23), 11211-11221.
  • Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
  • Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., & Liu, W. (2012). Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical communications, 48(64), 7955-7957.
  • Zhang, S., Pu, Q., Liu, P., Sun, Q., & Su, Z. (2002). Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation. Analytica Chimica Acta, 452(2), 223-230.
  • Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., & Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical communications(41), 5116-5118.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Hasan İlhan 0000-0002-4475-1629

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 10 Şubat 2023
Kabul Tarihi 19 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA İlhan, H. (2023). Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Journal of the Institute of Science and Technology, 13(3), 1916-1925. https://doi.org/10.21597/jist.1249897
AMA İlhan H. Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2023;13(3):1916-1925. doi:10.21597/jist.1249897
Chicago İlhan, Hasan. “Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells”. Journal of the Institute of Science and Technology 13, sy. 3 (Eylül 2023): 1916-25. https://doi.org/10.21597/jist.1249897.
EndNote İlhan H (01 Eylül 2023) Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Journal of the Institute of Science and Technology 13 3 1916–1925.
IEEE H. İlhan, “Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 3, ss. 1916–1925, 2023, doi: 10.21597/jist.1249897.
ISNAD İlhan, Hasan. “Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells”. Journal of the Institute of Science and Technology 13/3 (Eylül 2023), 1916-1925. https://doi.org/10.21597/jist.1249897.
JAMA İlhan H. Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1916–1925.
MLA İlhan, Hasan. “Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells”. Journal of the Institute of Science and Technology, c. 13, sy. 3, 2023, ss. 1916-25, doi:10.21597/jist.1249897.
Vancouver İlhan H. Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1916-25.