Bu çalışmada, 3,5-diamino-1,2,4-triazole (Guanazole) anti tümör ajanın yapısal ve spektroskopik özellikleri üzerine çözücü etkileri araştırıldı. Çözücü ortamlar içerisinde optimize edilmiş moleküler yapılar elde edildi. Guanazole’nin konformasyonel yapıları gaz fazda incelendi ve nispi nüfus analizleri Boltzmann dağılımı kullanılarak elde edildi. Ayrıca, Guanazole’nin deneysel FT-IR spektrumu kaydedildi. Ek olarak titreşim frekansları ve şiddetler optimize yapılar kullanılarak her bir çözücü ortam için hesaplandı ve deneysel veriler ile kıyaslandı. Hesaplamamalarda Yoğunluk Fonksiyoneli Teorisi ve 6311++G(d, p) temel seti kullanıldı. Saf Guanazole’nin deneysel IR spektrumundan yola çıkılarak, Guanazole’nin katı fazda dimer yapıda olduğu belirlendi. Bu yüzden dimer yapı için detaylı incelemeler yapıldı.
Aurkie R, Mitra S, Rosair GM, 2008. A novel hydroxo-bridged cyclic tetranuclear copper (II) complex using the guanazole ligand: Synthesis, crystal structure and thermal analysis, Inorganic Chemistry Communications 11: 1256-1259.
Bilkan MT, 2017. Structural and spectroscopic studies on dimerization and solvent-ligand complexes of Theobromine, Journal of Molecular Liquids, 238: 523-532.
Dave C, Paul MA, Rustum YM, 1978. Studies on the selective toxicity of guanazole in mice, European Journal of Cancer, 14: 33-40.
Dennington RD, Keith TA, Millam JM, 2008. GaussView 5, Gaussian, Inc.
Jamróz MH, 2004. Vibrational Energy Distribution Analysis VEDA 4, Warsaw.
Guennoun L, Jastimi JE, Guédira F, Marakchi K, Kabbaj OK, Hajji AE, Zaydoun S, 2011. Molecular geometry and vibrational studies of 3, 5-diamino-1, 2, 4-triazole using quantum chemical calculations and FT-IR and FT-Raman spectroscopies, Spectrochimica Acta Part A, 78: 347-353.
Haixiang Z, Dong Y, Liu H, 2016. Two new luminescent Zn (II) compounds constructed from guanazole and aromatic polycarboxylate ligands, Journal of Molecular Structure, 1105: 112-117.
Ho JA, Pickens CV, Gamscik MP, Colvin OM, Ware RE, 2003. In vitro induction of fetal hemoglobin in human erythroid progenitor cells, Experimental hematology, 31: 586-591.
Kumar VK, Keresztury G, Sundius T, Xavier RJ, 2005. Hydrogen bonding and molecular vibrations of 3, 5-diamino-1, 2, 4-triazole, Spectrochimica Acta Part A, 61: 261-267.
Miertuš S, Scrocco E, Tomasi J, 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chemical Physics, 55: 117-124.
Penglei C, Li X, 2015. Construction of two new Zn (II)-guanazole frameworks via varying organic carboxylate ligands, Journal of Molecular Structure, 1081: 182-186.
Starova GL, Frank-Kamanetskaya OV., Shibanova EF, Lopyrev VA, Voronkov МG, Makarskii VV, 1979. X-ray diffraction examination of the molecular structure of guanazole (3,5-diamino-ih-i,2,4-triazole), Khimiya Geterotsiklicheskikh Soedinenii, 10: 1422-1423.
Suter W, Romagna F, 1990. DNA repair induced by various mutagens in rat hepatocyte primary cultures measured in the presence of hydroxyurea, guanazole or aphidicolin, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 231: 251-264.
Xin Z, Jie Y, Rosenberg MR, Wan J, Zeng S, Cui W, Xiao Y, Li Z, Tu Z, Casarotto MG, Hu W, 2012. Design and synthesis of pinanamine derivatives as anti-influenza A M2 ion channel inhibitors, Antiviral research, 96:91-99.
Vick JA, Herman EH, 1970. Cardiovascular effects of Guanazole, Toxicology and applied pharmacology, 16:108-119.
An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-diamino-1,2,4-triazole
In this paper, solvent environments effects on structural and spectroscopic properties of 3,5-diamino-1,2,4-triazole (Guanazole) antitumor agent have been investigated. Optimized molecular structures were obtained in solvent media. Conformational structures of Guanazole in the gas phase were investigated and the relative population distributions of the conformations were obtained using the Boltzmann distribution. Moreover, the experimental FT-IR spectrum of Guanazole were recorded. In addition, vibrational frequencies and its intensities were calculated for each environment by using of optimized structures and they compared with the experimental data. Density Functional Theory and 6311++G (d,p) basis set were used in the theoretical calculations. Based on the solid phase IR spectrum of pure Guanazole, it was seen that Guanazole is dimeric structure in solid phase. For this reason, the dimer structure of Guanazole has been investigated in detail.
Aurkie R, Mitra S, Rosair GM, 2008. A novel hydroxo-bridged cyclic tetranuclear copper (II) complex using the guanazole ligand: Synthesis, crystal structure and thermal analysis, Inorganic Chemistry Communications 11: 1256-1259.
Bilkan MT, 2017. Structural and spectroscopic studies on dimerization and solvent-ligand complexes of Theobromine, Journal of Molecular Liquids, 238: 523-532.
Dave C, Paul MA, Rustum YM, 1978. Studies on the selective toxicity of guanazole in mice, European Journal of Cancer, 14: 33-40.
Dennington RD, Keith TA, Millam JM, 2008. GaussView 5, Gaussian, Inc.
Jamróz MH, 2004. Vibrational Energy Distribution Analysis VEDA 4, Warsaw.
Guennoun L, Jastimi JE, Guédira F, Marakchi K, Kabbaj OK, Hajji AE, Zaydoun S, 2011. Molecular geometry and vibrational studies of 3, 5-diamino-1, 2, 4-triazole using quantum chemical calculations and FT-IR and FT-Raman spectroscopies, Spectrochimica Acta Part A, 78: 347-353.
Haixiang Z, Dong Y, Liu H, 2016. Two new luminescent Zn (II) compounds constructed from guanazole and aromatic polycarboxylate ligands, Journal of Molecular Structure, 1105: 112-117.
Ho JA, Pickens CV, Gamscik MP, Colvin OM, Ware RE, 2003. In vitro induction of fetal hemoglobin in human erythroid progenitor cells, Experimental hematology, 31: 586-591.
Kumar VK, Keresztury G, Sundius T, Xavier RJ, 2005. Hydrogen bonding and molecular vibrations of 3, 5-diamino-1, 2, 4-triazole, Spectrochimica Acta Part A, 61: 261-267.
Miertuš S, Scrocco E, Tomasi J, 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chemical Physics, 55: 117-124.
Penglei C, Li X, 2015. Construction of two new Zn (II)-guanazole frameworks via varying organic carboxylate ligands, Journal of Molecular Structure, 1081: 182-186.
Starova GL, Frank-Kamanetskaya OV., Shibanova EF, Lopyrev VA, Voronkov МG, Makarskii VV, 1979. X-ray diffraction examination of the molecular structure of guanazole (3,5-diamino-ih-i,2,4-triazole), Khimiya Geterotsiklicheskikh Soedinenii, 10: 1422-1423.
Suter W, Romagna F, 1990. DNA repair induced by various mutagens in rat hepatocyte primary cultures measured in the presence of hydroxyurea, guanazole or aphidicolin, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 231: 251-264.
Xin Z, Jie Y, Rosenberg MR, Wan J, Zeng S, Cui W, Xiao Y, Li Z, Tu Z, Casarotto MG, Hu W, 2012. Design and synthesis of pinanamine derivatives as anti-influenza A M2 ion channel inhibitors, Antiviral research, 96:91-99.
Vick JA, Herman EH, 1970. Cardiovascular effects of Guanazole, Toxicology and applied pharmacology, 16:108-119.
Bilkan, M. T. (2018). An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-diamino-1,2,4-triazole. Journal of the Institute of Science and Technology, 8(1), 85-93. https://doi.org/10.21597/jist.407841
AMA
Bilkan MT. An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-diamino-1,2,4-triazole. Iğdır Üniv. Fen Bil Enst. Der. Mart 2018;8(1):85-93. doi:10.21597/jist.407841
Chicago
Bilkan, Mustafa Tuğfan. “An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-Diamino-1,2,4-Triazole”. Journal of the Institute of Science and Technology 8, sy. 1 (Mart 2018): 85-93. https://doi.org/10.21597/jist.407841.
EndNote
Bilkan MT (01 Mart 2018) An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-diamino-1,2,4-triazole. Journal of the Institute of Science and Technology 8 1 85–93.
IEEE
M. T. Bilkan, “An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-diamino-1,2,4-triazole”, Iğdır Üniv. Fen Bil Enst. Der., c. 8, sy. 1, ss. 85–93, 2018, doi: 10.21597/jist.407841.
ISNAD
Bilkan, Mustafa Tuğfan. “An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-Diamino-1,2,4-Triazole”. Journal of the Institute of Science and Technology 8/1 (Mart 2018), 85-93. https://doi.org/10.21597/jist.407841.
JAMA
Bilkan MT. An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-diamino-1,2,4-triazole. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:85–93.
MLA
Bilkan, Mustafa Tuğfan. “An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-Diamino-1,2,4-Triazole”. Journal of the Institute of Science and Technology, c. 8, sy. 1, 2018, ss. 85-93, doi:10.21597/jist.407841.
Vancouver
Bilkan MT. An FT-IR and DFT Study of Solvent Effects on Molecular Parameters and Vibrational Frequencies of 3,5-diamino-1,2,4-triazole. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(1):85-93.