Araştırma Makalesi
BibTex RIS Kaynak Göster

Energy Transfer between Fluoresin and Safranin-T in the Presence of Organized Surfactant Structures

Yıl 2018, , 143 - 155, 31.03.2018
https://doi.org/10.21597/jist.407862

Öz

In this study, energy transfer between Fluorescein and Safranine T molecules were investigated

by using UV-Vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques in reverse

micelle and microemülsion systems. The energy transfer parameters were calculated in water, reverse micelle

and microemülsion solution. It was observed that energy transfer between Fluorescein and Safranine T molecules

occurs at high efficiency and the energy transfer parameters can be controlled by changing the size of the media.

Kaynakça

  • Aydın BM, Acar M, Arık M and Onganer Y. 2009. The fluorescence resonance energy transfer between dye compounds in micellar media. Dyes and Pigments, 81: 156-160.
  • Bose D, Sarkar D, Girigoswami A, Mahata A, Ghosh D and Chattopadhyay N. 2009. Photophysics and rotational relaxation dynamics of cationic phenazinium dyes in anionic reverse micelles: Effect of methyl substitution. The Journal of Chemical Physics, 131: 114707.
  • Bozkurt E, Acar M, Meral K, Arık M and Onganer Y. 2012. Photoinduced interactions between coumarin 151 and colloidal CdS nanoparticles in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 236: 41-47.
  • Bozkurt E, Arık M and Onganer Y. 2015. A novel system for Fe3+ ion detection based on fluorescence resonance energy transfer. Sensors and Actuators B: Chemical, 221: 136-147.
  • Bozkurt E, Bayraktutan T, Acar M and Toprak M. 2013. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 101: 31-35.
  • Brouwer AM. 2011. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 83: 2213-2228.
  • Chatterjee S, Nandi S and Bhattacharya S. C. 2005. Fluorescence resonance energy transfer from Fluorescein to Safranine T in solutions and in micellar medium. Journal of Photochemistry and Photobiology A: Chemistry, 173: 221-227.
  • Chen Y, Chen L, Ou Y, Wang Z, Fu F and Guo L. 2016. DNAzyme-based biosensor for Cu2+ ion by combining hybridization chain reaction with fluorescence resonance energy transfer technique. Talanta, 155: 245-249.
  • Chowdhary J and Ladanyi BM. 2009. Molecular Dynamics Simulation of Aerosol-OT Reverse Micelles. The Journal of Physical Chemistry B, 113: 15029-15039.
  • Clegg RM. 1992. Fluorescence resonance energy transfer and nucleic acids Methods in Enzymology Academic Press, 353-388
  • De S and Girigoswami A. 2004. Fluorescence resonance energy transfer—a spectroscopic probe for organized surfactant media. Journal of Colloid and Interface Science, 271: 485-495.
  • Dey D, Saha J, Roy AD, Bhattacharjee D and Hussain SA. 2014. Development of an ion-sensor using fluorescence resonance energy transfer. Sensors and Actuators B: Chemical, 195: 382-388.
  • Eastoe J, Hollamby MJ and Hudson L. 2006. Recent advances in nanoparticle synthesis with reversed micelles. Advances in Colloid and Interface Science, 128–130: 5-15.
  • Eskici G. and Axelsen PH. 2016. The Size of a Reverse Micelle. Biophysical Journal, 110: 571a.
  • Ghosh D. Batuta S. Begum NA. And Mandal D. 2017. Proton transfer dynamics in a polar nanodroplet: ESIPT of 4'-n,n-dimethylamino-3-hydroxyflavone in AOT/alkane/water reverse micelles. Journal of Luminescence, 184: 64-73.
  • Hazra P and Sarkar N. 2001. Intramolecular charge transfer processes and solvation dynamics of coumarin 490 in reverse micelles. Chemical Physics Letters, 342: 303-311.
  • Hillisch A, Lorenz M and Diekmann S. 2001. Recent advances in FRET: distance determination in protein–DNA complexes. Current Opinion in Structural Biology, 11: 201-207.
  • Kumar Das A, Mondal T, Kumar Sasmal D and Bhattacharyya K. 2011. Femtosecond study of ultrafast fluorescence resonance energy transfer in a catanionic vesicle. The Journal of Chemical Physics, 135: 074507.
  • Lakowicz JR. 2013. Principles of fluorescence spectroscopy: Springer Science & Business Media.
  • Lee HL, Dhenadhayalan N and Lin KC. 2015. Metal ion induced fluorescence resonance energy transfer between crown ether functionalized quantum dots and rhodamine B: selectivity of K+ ion. RSC Advances, 5: 4926-4933.
  • Mathew DS and Juang RS. 2007. Role of alcohols in the formation of inverse microemulsions and back extraction of proteins/enzymes in a reverse micellar system. Separation and Purification Technology, 53: 199-215.
  • Min, X., Huang, Z., Fang, M., Liu, Y.-G., Tang, C., & Wu, X. 2014. Energy Transfer from Sm3+ to Eu3+ in Red-Emitting Phosphor LaMgAl11O19:Sm3+, Eu3+ for Solar Cells and Near-Ultraviolet White Light-Emitting Diodes. Inorganic Chemistry, 53: 6060-6065.
  • Müller-Goymann C. 2004. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. European Journal of Pharmaceutics and Biopharmaceutics, 58: 343-356.
  • Ohta Y, Kamagata T, Mukai A, Takada S, Nagai T and Horikawa K. 2016. Nontrivial Effect of the Color-Exchange of a Donor/Acceptor Pair in the Engineering of Förster Resonance Energy Transfer (FRET)-Based Indicators. ACS Chemical Biology, 11: 1816-1822.
  • Pileni MP. 1993. Reverse micelles as microreactors. The Journal of Physical Chemistry, 97: 6961-6973.
  • Rabouw, F. T., Den Hartog, S.,A., Senden, T., and Meijerink, A. 2014. Photonic effects on the forster resonance energy transfer efficiency. Nature Communications, 5: 3610-3616.
  • Quinlan FT, Kuther J, Tremel W., Knoll W, Risbud S and Stroeve P. 2000. Reverse micelle synthesis and characterization of ZnSe nanoparticles. Langmuir, 16: 4049-4051.
  • Seth D, Chakrabarty D, Chakraborty A and Sarkar N. 2005. Study of energy transfer from 7-amino coumarin donors to rhodamine 6G acceptor in non-aqueous reverse micelles. Chemical Physics Letters, 401: 546-552.
  • Shi, J., Chan, C., Pang, Y., Ye, W., Tian, F., Lyu, J., Zhang, Y., Yang, M. 2015. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosensors and Bioelectronics, 67: 595-600.
  • Sundström V, Pullerits T and Van Grondelle R. 1999. Photosynthetic Light-Harvesting:  Reconciling Dynamics and Structure of Purple Bacterial LH2 Reveals Function of Photosynthetic Unit. The Journal of Physical Chemistry B, 103: 2327-2346.
  • Tan A, Bozkurt E, Kishali N and Kara Y. 2014. A New and Convenient Synthesis of Amino‐phthalimide (1H‐Isoindole‐1, 3 (2H)‐dione) Derivatives and Their Photoluminescent Properties. Helvetica Chimica Acta, 97: 1107-1114.
  • Wang J, Wei J, Su S and Qiu J. 2015. Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New Journal of Chemistry, 39: 501-507.
  • Wang Y, Lee CH, Tang YL and Kan CW. 2016. Dyeing cotton in alkane solvent using polyethylene glycol-based reverse micelle as reactive dye carrier. Cellulose, 23: 965-980.

Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi

Yıl 2018, , 143 - 155, 31.03.2018
https://doi.org/10.21597/jist.407862

Öz

Bu çalışmada, Floresin ve Safranin-T molekülleri arasındaki enerji transferi ters misel ve mikro-emülsiyon
sistemlerde UV-Gör. absorpsiyon, durgun-hal ve zamana-bağlı floresans spektroskopisi teknikleri kullanılarak
incelenmiştir. Su, ters misel ve mikro-emülsiyon çözeltileri içerisindeki enerji transfer parametreleri hesaplanmıştır.
Floresin ve Safranin-T molekülleri arasındaki enerji transferinin yüksek verimde meydana geldiği ve enerji transfer
parametrelerinin ortamın boyutu değiştirilerek kontrol edilebileceği gözlenmiştir.

Kaynakça

  • Aydın BM, Acar M, Arık M and Onganer Y. 2009. The fluorescence resonance energy transfer between dye compounds in micellar media. Dyes and Pigments, 81: 156-160.
  • Bose D, Sarkar D, Girigoswami A, Mahata A, Ghosh D and Chattopadhyay N. 2009. Photophysics and rotational relaxation dynamics of cationic phenazinium dyes in anionic reverse micelles: Effect of methyl substitution. The Journal of Chemical Physics, 131: 114707.
  • Bozkurt E, Acar M, Meral K, Arık M and Onganer Y. 2012. Photoinduced interactions between coumarin 151 and colloidal CdS nanoparticles in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 236: 41-47.
  • Bozkurt E, Arık M and Onganer Y. 2015. A novel system for Fe3+ ion detection based on fluorescence resonance energy transfer. Sensors and Actuators B: Chemical, 221: 136-147.
  • Bozkurt E, Bayraktutan T, Acar M and Toprak M. 2013. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 101: 31-35.
  • Brouwer AM. 2011. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 83: 2213-2228.
  • Chatterjee S, Nandi S and Bhattacharya S. C. 2005. Fluorescence resonance energy transfer from Fluorescein to Safranine T in solutions and in micellar medium. Journal of Photochemistry and Photobiology A: Chemistry, 173: 221-227.
  • Chen Y, Chen L, Ou Y, Wang Z, Fu F and Guo L. 2016. DNAzyme-based biosensor for Cu2+ ion by combining hybridization chain reaction with fluorescence resonance energy transfer technique. Talanta, 155: 245-249.
  • Chowdhary J and Ladanyi BM. 2009. Molecular Dynamics Simulation of Aerosol-OT Reverse Micelles. The Journal of Physical Chemistry B, 113: 15029-15039.
  • Clegg RM. 1992. Fluorescence resonance energy transfer and nucleic acids Methods in Enzymology Academic Press, 353-388
  • De S and Girigoswami A. 2004. Fluorescence resonance energy transfer—a spectroscopic probe for organized surfactant media. Journal of Colloid and Interface Science, 271: 485-495.
  • Dey D, Saha J, Roy AD, Bhattacharjee D and Hussain SA. 2014. Development of an ion-sensor using fluorescence resonance energy transfer. Sensors and Actuators B: Chemical, 195: 382-388.
  • Eastoe J, Hollamby MJ and Hudson L. 2006. Recent advances in nanoparticle synthesis with reversed micelles. Advances in Colloid and Interface Science, 128–130: 5-15.
  • Eskici G. and Axelsen PH. 2016. The Size of a Reverse Micelle. Biophysical Journal, 110: 571a.
  • Ghosh D. Batuta S. Begum NA. And Mandal D. 2017. Proton transfer dynamics in a polar nanodroplet: ESIPT of 4'-n,n-dimethylamino-3-hydroxyflavone in AOT/alkane/water reverse micelles. Journal of Luminescence, 184: 64-73.
  • Hazra P and Sarkar N. 2001. Intramolecular charge transfer processes and solvation dynamics of coumarin 490 in reverse micelles. Chemical Physics Letters, 342: 303-311.
  • Hillisch A, Lorenz M and Diekmann S. 2001. Recent advances in FRET: distance determination in protein–DNA complexes. Current Opinion in Structural Biology, 11: 201-207.
  • Kumar Das A, Mondal T, Kumar Sasmal D and Bhattacharyya K. 2011. Femtosecond study of ultrafast fluorescence resonance energy transfer in a catanionic vesicle. The Journal of Chemical Physics, 135: 074507.
  • Lakowicz JR. 2013. Principles of fluorescence spectroscopy: Springer Science & Business Media.
  • Lee HL, Dhenadhayalan N and Lin KC. 2015. Metal ion induced fluorescence resonance energy transfer between crown ether functionalized quantum dots and rhodamine B: selectivity of K+ ion. RSC Advances, 5: 4926-4933.
  • Mathew DS and Juang RS. 2007. Role of alcohols in the formation of inverse microemulsions and back extraction of proteins/enzymes in a reverse micellar system. Separation and Purification Technology, 53: 199-215.
  • Min, X., Huang, Z., Fang, M., Liu, Y.-G., Tang, C., & Wu, X. 2014. Energy Transfer from Sm3+ to Eu3+ in Red-Emitting Phosphor LaMgAl11O19:Sm3+, Eu3+ for Solar Cells and Near-Ultraviolet White Light-Emitting Diodes. Inorganic Chemistry, 53: 6060-6065.
  • Müller-Goymann C. 2004. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. European Journal of Pharmaceutics and Biopharmaceutics, 58: 343-356.
  • Ohta Y, Kamagata T, Mukai A, Takada S, Nagai T and Horikawa K. 2016. Nontrivial Effect of the Color-Exchange of a Donor/Acceptor Pair in the Engineering of Förster Resonance Energy Transfer (FRET)-Based Indicators. ACS Chemical Biology, 11: 1816-1822.
  • Pileni MP. 1993. Reverse micelles as microreactors. The Journal of Physical Chemistry, 97: 6961-6973.
  • Rabouw, F. T., Den Hartog, S.,A., Senden, T., and Meijerink, A. 2014. Photonic effects on the forster resonance energy transfer efficiency. Nature Communications, 5: 3610-3616.
  • Quinlan FT, Kuther J, Tremel W., Knoll W, Risbud S and Stroeve P. 2000. Reverse micelle synthesis and characterization of ZnSe nanoparticles. Langmuir, 16: 4049-4051.
  • Seth D, Chakrabarty D, Chakraborty A and Sarkar N. 2005. Study of energy transfer from 7-amino coumarin donors to rhodamine 6G acceptor in non-aqueous reverse micelles. Chemical Physics Letters, 401: 546-552.
  • Shi, J., Chan, C., Pang, Y., Ye, W., Tian, F., Lyu, J., Zhang, Y., Yang, M. 2015. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosensors and Bioelectronics, 67: 595-600.
  • Sundström V, Pullerits T and Van Grondelle R. 1999. Photosynthetic Light-Harvesting:  Reconciling Dynamics and Structure of Purple Bacterial LH2 Reveals Function of Photosynthetic Unit. The Journal of Physical Chemistry B, 103: 2327-2346.
  • Tan A, Bozkurt E, Kishali N and Kara Y. 2014. A New and Convenient Synthesis of Amino‐phthalimide (1H‐Isoindole‐1, 3 (2H)‐dione) Derivatives and Their Photoluminescent Properties. Helvetica Chimica Acta, 97: 1107-1114.
  • Wang J, Wei J, Su S and Qiu J. 2015. Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New Journal of Chemistry, 39: 501-507.
  • Wang Y, Lee CH, Tang YL and Kan CW. 2016. Dyeing cotton in alkane solvent using polyethylene glycol-based reverse micelle as reactive dye carrier. Cellulose, 23: 965-980.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Ebru Bozkurt 0000-0002-5345-9718

Yayımlanma Tarihi 31 Mart 2018
Gönderilme Tarihi 12 Eylül 2017
Kabul Tarihi 30 Ekim 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Bozkurt, E. (2018). Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi. Journal of the Institute of Science and Technology, 8(1), 143-155. https://doi.org/10.21597/jist.407862
AMA Bozkurt E. Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi. Iğdır Üniv. Fen Bil Enst. Der. Mart 2018;8(1):143-155. doi:10.21597/jist.407862
Chicago Bozkurt, Ebru. “Organize Surfaktant Yapılar Varlığında Floresin Ve Safranin-T Arasındaki Enerji Transferi”. Journal of the Institute of Science and Technology 8, sy. 1 (Mart 2018): 143-55. https://doi.org/10.21597/jist.407862.
EndNote Bozkurt E (01 Mart 2018) Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi. Journal of the Institute of Science and Technology 8 1 143–155.
IEEE E. Bozkurt, “Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi”, Iğdır Üniv. Fen Bil Enst. Der., c. 8, sy. 1, ss. 143–155, 2018, doi: 10.21597/jist.407862.
ISNAD Bozkurt, Ebru. “Organize Surfaktant Yapılar Varlığında Floresin Ve Safranin-T Arasındaki Enerji Transferi”. Journal of the Institute of Science and Technology 8/1 (Mart 2018), 143-155. https://doi.org/10.21597/jist.407862.
JAMA Bozkurt E. Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:143–155.
MLA Bozkurt, Ebru. “Organize Surfaktant Yapılar Varlığında Floresin Ve Safranin-T Arasındaki Enerji Transferi”. Journal of the Institute of Science and Technology, c. 8, sy. 1, 2018, ss. 143-55, doi:10.21597/jist.407862.
Vancouver Bozkurt E. Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(1):143-55.