Araştırma Makalesi
BibTex RIS Kaynak Göster

Preparation of Nanoparticle-Amplified Surface Plasmon Resonance Sensors Based on Molecular Imprinting for Pesticide Determination

Yıl 2018, , 219 - 226, 30.09.2018
https://doi.org/10.21597/jist.458636

Öz

Pesticides have been utilized in agriculture for decades. However, their widespread use has increased

concerns due to their known toxicities on long term human health risks in scientific and industrial communities.

Thus, the detection of pesticides will have a great prescription due to both improve their toxicity effects over

humans and their management. In this study, poly[ethyleneglycol dimethacrylate-N-methacryloyl-(L)-tryptophan

methyl ester poly(EGDMA-MATrp) nanoparticles for sensitive, selective, fast and realtime detection chlorpyrifos

were firstly prepared and characterized by zeta sizer. Then, a chlorpyrifos-printed SPR nanosensor was prepared and

characterized by atomic force microscopy (AFM) and contact angle measurements. The thickness measurements

and AFM observations indicated that the nanoparticle thin films were almost monolayer. Chlorpyrifos sensing

ability of imprinted and nonimprinted nanosensors were investigated from chlorpyrifos solutions within the range

of 0.015-2.9 nM. Imprinted nanoparticles showed more sensitivity to chlorpyrifos than non-imprinted ones.

Langmuir adsorption model was determined as the most suitable model for this affinity system. In order to show

the selectivity of the chlorpyrifos imprinted nanoparticles, competitive adsorption of chlorpyrifos, diazinon and

parathion at 2.9 nM concentration was investigated. As a result of, SPR nanosensors have a potential to be used as

an alternative method for pesticides analysis due to fast response, easy-to-use properties, precision, selective and

real-time measurement capability.

Kaynakça

  • Bereli N, Saylan Y, Uzun L, Say R, Denizli A, 2011. L-histidine imprinted supermacroporous cryogels for protein recognition. Seperation Puriffication Technology, 82: 28-35.
  • Chen YC, Brazier JJ, Yan MD, Bargo PR, Prahl SA, 2004. Flourescence-based optical sensor design for molecularly imprinted polymers. Sensors and Actuators B: Chemical, 102: 107-116.
  • Daş YK, Aksoy A, 2016. Pestisitler. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 2(2).
  • Gabrieli B, Magali K, Lucila R, Martha BA, Renato Z, Osmar DP, 2016. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta, 161: 40-47.
  • Gültekin A, Ersöz A, Denizli A, Say R, 2012. Preparation of new molecularly imprinted nanosensor for cholic acid determination. Sensors and Actuators B: Chemical, 162: 153-158.
  • Jamal HM, Ahmad AS, 2016. Organochlorine pesticide residues in human milk and estimated daily intake (EDI) for the infants from eastern region of Saudi Arabia. Environmental Sciences & Ecology, 164: 643-648.
  • Kim N, Park IS, Kim DK, 2007. High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosensors and Bioelectronics, 22: 1593-1599.
  • Kouzayha A, Rabaa AR, Iskandarani M, Beh D, Budzinski H, Jaber F, 2012. Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography-Mass spectrometry. American Journal of Analytical Chemistry, 3: 257-265.
  • Li X, Husson SM, 2006. Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study. Biosensors and Bioelectronics, 22: 336–348.
  • Luzardo OP, Almeida-González M, Ruiz-Suárez N, Zumbado M, Henríquez-Hernández LA, Meilán MJ, Camacho M, Boada LD, 2015. Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases. Science and Justice, 55: 307–315.
  • Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclús JJ, 2006. Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Analytica Chimica Acta, 561: 40-47.
  • Sari E, Üzek R, Duman M, Denizli A, 2016. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles. Talanta, 150: 607–614.
  • Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Yılmaz F, Denizli A, 2017. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B: Chemical, 241: 446-454.
  • Saylan Y, Üzek R, Uzun L, Denizli A, 2014. Surface imprinting approach for preparing specific adsorbent for IgG separation. Journal of Biomaterials Science, Polymer Edition, 25: 881-894.
  • Sharp DS, Eskenazi B, Harrison R, Callas P, Smith AH, 1986. Delayed health hazard of pesticide exposure. American Jornal of Publich Health, 7: 441-471.
  • Therese Marie SR, Drexel HC, 2017. Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic degradation of toxic chlorpyrifos in water. Journal of Environmental Chemical Engineering, 5: 2524-2532.
  • Tuna S, Duman O, Soylu I, Kancı Bozoğlan B, 2014. Spectroscopic investigation of the interactions of carbofuran and amitrol herbicides with human serum albümin. Journal of Luminescence, 151: 22-28.
  • Üzek R, Özkara S, Güngüneş H, Uzun L, Şenel S, 2014. Magnetic nanoparticles for plasmid DNA purification through hydrophobic interaction chromatography. Separation Science and Technology, 49: 2193–2203.
  • Yazgan MS, 1997. Türkiye′de pestisit kirliliği. Türkiye′de Çevre Kirlenmesi Öncelikleri Sempozyumu II, 571-577. Gebze-Kocaeli.
  • Yılmaz F, Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Denizli A, 2017. Surface plasmon resonance based nanosensors for detection of triazinic pesticides in agricultural foods. New Pesticides and Soil Sensors, 679-718.
  • Yilmaz E, Majidi D, Özgür E, Denizli A, 2015. Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM. Sensors and Actuators B, 209: 714–721.

Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması

Yıl 2018, , 219 - 226, 30.09.2018
https://doi.org/10.21597/jist.458636

Öz

Pestisitler yıllardır tarım alanlarında kullanılmaktadır. Ancak bu yaygın kullanım, bilimsel ve endüstriyel
topluluklarda pestisitlerin uzun vadeli insan sağlığı riskleri üzerine bilinen toksisitelerinden dolayı endişeyi
arttırmıştır. Böylelikle pestisitlerin tayin edilmesi, hem insanlar üzerinde artan toksik etkilerinden hem de
kullanımının kontrol altına alınmasından dolayı büyük bir öneme sahiptir. Bu çalışmada, seçici, hassas, hızlı ve
gerçek zamanlı klorpirifos tayini için ilk olarak, poli[etilenglikol dimetakrilat-N-metakriloil-(l)-triptofan metil
ester poly(EGDMA-MATrp) nanopartikülleri hazırlandı ve zeta sizer ile karakterize edildi. Ardından, klorpirifos
baskılı SPR nanosensör hazırlanarak atomik kuvvet mikroskobu (AFM) ve temas açısı ölçümleri ile karakterize
edildi. Kalınlık ölçümleri ve AFM görüntüleri, nanopartiküllerden oluşan ince filmlerin hemen hemen tek tabakalı
olduğunu gösterdi. Baskılanmış ve baskılanmamış nanosensörlerin klorpirifos tayin duyarlılığı 0.015-2.9 nM
aralığında klorpirifos çözeltileri ile araştırıldı. Baskılanmış nanopartiküllerin, baskılanmamışlara göre daha fazla
duyarlılık gösterdiği belirlendi. Langmuir adsorpsiyon modeli, bu afinite sistemi için en uygun model olarak
belirlendi. Klorpirifos baskılanmış nanopartiküllerin seçiciliğini göstermek için 2.9 nM derişimindeki klorpirifos,
diazinon ve parationun yarışmalı adsorpsiyonu araştırıldı. Sonuç olarak, SPR nanosensörlerin hızlı yanıt, kullanım
kolaylığı, hassasiyet, seçicilik ve gerçek zamanlı ölçüm alınabilme özelliğinden dolayı pestisit analizleri için
alternatif bir yöntem olarak kullanılma potansiyeline sahip olduğu görüldü.

Kaynakça

  • Bereli N, Saylan Y, Uzun L, Say R, Denizli A, 2011. L-histidine imprinted supermacroporous cryogels for protein recognition. Seperation Puriffication Technology, 82: 28-35.
  • Chen YC, Brazier JJ, Yan MD, Bargo PR, Prahl SA, 2004. Flourescence-based optical sensor design for molecularly imprinted polymers. Sensors and Actuators B: Chemical, 102: 107-116.
  • Daş YK, Aksoy A, 2016. Pestisitler. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 2(2).
  • Gabrieli B, Magali K, Lucila R, Martha BA, Renato Z, Osmar DP, 2016. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta, 161: 40-47.
  • Gültekin A, Ersöz A, Denizli A, Say R, 2012. Preparation of new molecularly imprinted nanosensor for cholic acid determination. Sensors and Actuators B: Chemical, 162: 153-158.
  • Jamal HM, Ahmad AS, 2016. Organochlorine pesticide residues in human milk and estimated daily intake (EDI) for the infants from eastern region of Saudi Arabia. Environmental Sciences & Ecology, 164: 643-648.
  • Kim N, Park IS, Kim DK, 2007. High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosensors and Bioelectronics, 22: 1593-1599.
  • Kouzayha A, Rabaa AR, Iskandarani M, Beh D, Budzinski H, Jaber F, 2012. Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography-Mass spectrometry. American Journal of Analytical Chemistry, 3: 257-265.
  • Li X, Husson SM, 2006. Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study. Biosensors and Bioelectronics, 22: 336–348.
  • Luzardo OP, Almeida-González M, Ruiz-Suárez N, Zumbado M, Henríquez-Hernández LA, Meilán MJ, Camacho M, Boada LD, 2015. Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases. Science and Justice, 55: 307–315.
  • Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclús JJ, 2006. Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Analytica Chimica Acta, 561: 40-47.
  • Sari E, Üzek R, Duman M, Denizli A, 2016. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles. Talanta, 150: 607–614.
  • Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Yılmaz F, Denizli A, 2017. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B: Chemical, 241: 446-454.
  • Saylan Y, Üzek R, Uzun L, Denizli A, 2014. Surface imprinting approach for preparing specific adsorbent for IgG separation. Journal of Biomaterials Science, Polymer Edition, 25: 881-894.
  • Sharp DS, Eskenazi B, Harrison R, Callas P, Smith AH, 1986. Delayed health hazard of pesticide exposure. American Jornal of Publich Health, 7: 441-471.
  • Therese Marie SR, Drexel HC, 2017. Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic degradation of toxic chlorpyrifos in water. Journal of Environmental Chemical Engineering, 5: 2524-2532.
  • Tuna S, Duman O, Soylu I, Kancı Bozoğlan B, 2014. Spectroscopic investigation of the interactions of carbofuran and amitrol herbicides with human serum albümin. Journal of Luminescence, 151: 22-28.
  • Üzek R, Özkara S, Güngüneş H, Uzun L, Şenel S, 2014. Magnetic nanoparticles for plasmid DNA purification through hydrophobic interaction chromatography. Separation Science and Technology, 49: 2193–2203.
  • Yazgan MS, 1997. Türkiye′de pestisit kirliliği. Türkiye′de Çevre Kirlenmesi Öncelikleri Sempozyumu II, 571-577. Gebze-Kocaeli.
  • Yılmaz F, Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Denizli A, 2017. Surface plasmon resonance based nanosensors for detection of triazinic pesticides in agricultural foods. New Pesticides and Soil Sensors, 679-718.
  • Yilmaz E, Majidi D, Özgür E, Denizli A, 2015. Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM. Sensors and Actuators B, 209: 714–721.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Oğuz Çakır 0000-0002-8006-2054

Monireh Bakhshpour Bu kişi benim 0000-0002-5737-720X

Fatma Yılmaz Bu kişi benim 0000-0003-3260-1639

Zübeyde Baysal Bu kişi benim 0000-0001-7682-4469

Yayımlanma Tarihi 30 Eylül 2018
Gönderilme Tarihi 13 Aralık 2017
Kabul Tarihi 22 Şubat 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Çakır, O., Bakhshpour, M., Yılmaz, F., Baysal, Z. (2018). Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması. Journal of the Institute of Science and Technology, 8(3), 219-226. https://doi.org/10.21597/jist.458636
AMA Çakır O, Bakhshpour M, Yılmaz F, Baysal Z. Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2018;8(3):219-226. doi:10.21597/jist.458636
Chicago Çakır, Oğuz, Monireh Bakhshpour, Fatma Yılmaz, ve Zübeyde Baysal. “Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması”. Journal of the Institute of Science and Technology 8, sy. 3 (Eylül 2018): 219-26. https://doi.org/10.21597/jist.458636.
EndNote Çakır O, Bakhshpour M, Yılmaz F, Baysal Z (01 Eylül 2018) Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması. Journal of the Institute of Science and Technology 8 3 219–226.
IEEE O. Çakır, M. Bakhshpour, F. Yılmaz, ve Z. Baysal, “Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması”, Iğdır Üniv. Fen Bil Enst. Der., c. 8, sy. 3, ss. 219–226, 2018, doi: 10.21597/jist.458636.
ISNAD Çakır, Oğuz vd. “Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması”. Journal of the Institute of Science and Technology 8/3 (Eylül 2018), 219-226. https://doi.org/10.21597/jist.458636.
JAMA Çakır O, Bakhshpour M, Yılmaz F, Baysal Z. Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:219–226.
MLA Çakır, Oğuz vd. “Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması”. Journal of the Institute of Science and Technology, c. 8, sy. 3, 2018, ss. 219-26, doi:10.21597/jist.458636.
Vancouver Çakır O, Bakhshpour M, Yılmaz F, Baysal Z. Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(3):219-26.