Araştırma Makalesi
BibTex RIS Kaynak Göster

Kotanjant Demette Modified Riemannian Extension’a Göre Projektif Vektör Alanları

Yıl 2019, , 389 - 396, 01.03.2019
https://doi.org/10.21597/jist.462637

Öz

, boyutlu  Riemannian manifoldunun kotanjant
demeti olsun. Bu çalışmadaki amacımız kotanjant demette
modifiye edilmiş Riemann genişlemesine
göre
fibre koruyan projektif vektör
alanlarının karakterizasyonunu yapmaktır. 

Kaynakça

  • Gezer A, 2011. On infinitesimal holomorphically projective transformations on the tangent bundles with respect to the Sasaki metric, Proc. Est. Acad. Sci., 60(3): 149–157.
  • Gezer A, Bilen L, Çakmak A, 2015. Properties of modified Riemannian extensions, Zh. Mat. Fiz. Anal. Geom., 11(2): 159–173.
  • Hasegawa I, Yamauchi K, 2003. Infinitesimal projective transformations on tangent bundles with lift connection, Scientiae Mathematicae Japonicae., 57(3): 469-483, e7, 489-503.
  • Yamauchi K, 1998. On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds, Ann Rep. Asahikawa. Med. Coll., 19: 49-55.
  • Yamauchi K, 1999. On infinitesimal projective transformations of the tangent bundles with the metric II+III, Ann Rep. Asahikawa. Med. Coll., (20): 67-72.
  • Yano K, Ishihara S, 1973. Tangent and Cotangent Bundles, Marcel Dekker, Inc, New York.

Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension

Yıl 2019, , 389 - 396, 01.03.2019
https://doi.org/10.21597/jist.462637

Öz

Let  be the cotangent bundle of an dimensional Riemannian manifold . The purpose of the present paper is give a characterization of
fibre-preserving projective vector fields with respect to modified Riemannian
extension.

Kaynakça

  • Gezer A, 2011. On infinitesimal holomorphically projective transformations on the tangent bundles with respect to the Sasaki metric, Proc. Est. Acad. Sci., 60(3): 149–157.
  • Gezer A, Bilen L, Çakmak A, 2015. Properties of modified Riemannian extensions, Zh. Mat. Fiz. Anal. Geom., 11(2): 159–173.
  • Hasegawa I, Yamauchi K, 2003. Infinitesimal projective transformations on tangent bundles with lift connection, Scientiae Mathematicae Japonicae., 57(3): 469-483, e7, 489-503.
  • Yamauchi K, 1998. On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds, Ann Rep. Asahikawa. Med. Coll., 19: 49-55.
  • Yamauchi K, 1999. On infinitesimal projective transformations of the tangent bundles with the metric II+III, Ann Rep. Asahikawa. Med. Coll., (20): 67-72.
  • Yano K, Ishihara S, 1973. Tangent and Cotangent Bundles, Marcel Dekker, Inc, New York.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Lokman Bilen 0000-0001-8240-5359

Yayımlanma Tarihi 1 Mart 2019
Gönderilme Tarihi 21 Eylül 2018
Kabul Tarihi 25 Ekim 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Bilen, L. (2019). Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Journal of the Institute of Science and Technology, 9(1), 389-396. https://doi.org/10.21597/jist.462637
AMA Bilen L. Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Iğdır Üniv. Fen Bil Enst. Der. Mart 2019;9(1):389-396. doi:10.21597/jist.462637
Chicago Bilen, Lokman. “Projective Vector Fields on the Cotangent Bundle With Modified Riemannian Extension”. Journal of the Institute of Science and Technology 9, sy. 1 (Mart 2019): 389-96. https://doi.org/10.21597/jist.462637.
EndNote Bilen L (01 Mart 2019) Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Journal of the Institute of Science and Technology 9 1 389–396.
IEEE L. Bilen, “Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 1, ss. 389–396, 2019, doi: 10.21597/jist.462637.
ISNAD Bilen, Lokman. “Projective Vector Fields on the Cotangent Bundle With Modified Riemannian Extension”. Journal of the Institute of Science and Technology 9/1 (Mart 2019), 389-396. https://doi.org/10.21597/jist.462637.
JAMA Bilen L. Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:389–396.
MLA Bilen, Lokman. “Projective Vector Fields on the Cotangent Bundle With Modified Riemannian Extension”. Journal of the Institute of Science and Technology, c. 9, sy. 1, 2019, ss. 389-96, doi:10.21597/jist.462637.
Vancouver Bilen L. Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(1):389-96.