In this paper, parallels of latitude and meridians of longitude in S_C^3 are identified via the special complex unitary matrices 〖SU〗_C (2). It is also obtained that the third homology group of complex 2-sphere S_C^2 equal to zero.
Real quaternion algebra complexified quaternion algebra complex-clifford tori
In this paper, parallels of latitude and meridians of longitude in S_C^3 are identified via the special complex unitary matrices 〖SU〗_C (2). It is also obtained that the third homology group of complex 2-sphere S_C^2 equal to zero.
Real quaternion algebra complexified quaternion algebra complex-clifford tori
| Birincil Dil | İngilizce |
|---|---|
| Konular | Matematik |
| Bölüm | Araştırma Makalesi |
| Yazarlar | |
| Gönderilme Tarihi | 4 Aralık 2019 |
| Kabul Tarihi | 18 Ocak 2020 |
| Yayımlanma Tarihi | 1 Mart 2020 |
| Yayımlandığı Sayı | Yıl 2020 Cilt: 10 Sayı: 1 |