Araştırma Makalesi
BibTex RIS Kaynak Göster

Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension

Yıl 2020, , 2872 - 2880, 15.12.2020
https://doi.org/10.21597/jist.703428

Öz

The main purpose of the present paper is to study some properties of infinitesimal paraholomorphically projective transformation on 𝑇∗𝑀 with respect to the Levi-Civita connection of the Riemannian extension ( 𝑅∇) and adapted almost paracomplex structure 𝐽. Moreover, if 𝑇∗𝑀 be admits a non-affine infinitesimal paraholomorphically projective transformation, than 𝑀 and 𝑇∗𝑀 are locally flat.

Kaynakça

  • Aslanci S, Kazimova S and Salimov A A, 2010. Some remarks concerning Riemannian extensions. Ukrainian Mathematical Journal, 62(5): 661-675.
  • Bilen L, 2019. Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Journal of the Institute of Science and Technology, 9(1): 389-396.
  • Cruceanu V, Gadea PM and Munoz Masque J, 1995. Para-Hermitian and Para-Kahler Manifolds. Quaderni Inst. Math. Messina, 2: 1-70.
  • Etayo F and Gadea PM, 1992. Paraholomorphically projective vector field. An. St.Univ."Al. I. Cuza" Iaşi Sect. a Mat. (N. S.), 38: 201-210.
  • Gezer A, 2011. On infinitesimal holomorfically projective transformations on the tangent bundles with respect to the Sasaki metric. Proc. Est. Acad. Sci, 60(3): 149-157
  • Hasegawa I and Yamauchi K, 1979. On infinitesimal holomorphically projective transformations in compact Kaehlerian manifolds. Hokkaido Math. J, 8: 214–219.
  • Hasegawa I and Yamauchi K, 2003. Infinitesimal holomorphically projective transformations on the tangent bundles with horizontal lift connection and adapted almost complex structure. J. Hokkaido Univ. Education, 53: 1–8.
  • Hasegawa I and Yamauchi K, 2005. Infinitesimal holomorphically projective transformations on the tangent bundles with complete lift connection. Differ. Geom. Dyn. Syst, 7: 42–48.
  • Iscan M and Magden A, 2008. Infinitesimal paraholomorphically projective transformations on tangent bundles with diagonal lift connection. Differential Geometry - Dynamical Systems, Vol.10: 170-177.
  • Patterson E M and Walker A G, 1952. Riemannian extensions. Quant. J. Math, 3: 19–28.
  • Prvanovic M, 1971. Holomorphically projective transformations in a locally product spaces. Math. Balkanika (N.S.), 1: 195-213.
  • Salimov A A, Iscan M and Etayo F, 2007. Paraholomorphic B-manifold and its properties. Topology and its Application, 154: 925-933.
  • Tarakci O, Gezer A and Salimov A A, 2009. On solutions of IHPT equations on tangent bundle with the metric II+III. Math.Comput. Modelling, 50: 953–958.
  • Yano K, Ishihara S, 1973. Tangent and cotangent bundles. Marcel Dekker, Inc. New York.

Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension

Yıl 2020, , 2872 - 2880, 15.12.2020
https://doi.org/10.21597/jist.703428

Öz

The main purpose of the present paper is to study some properties of infinitesimal paraholomorphically projective transformation on 𝑇∗𝑀 with respect to the Levi-Civita connection of the Riemannian extension ( 𝑅∇) and adapted almost paracomplex structure 𝐽. Moreover, if 𝑇∗𝑀 be admits a non-affine infinitesimal paraholomorphically projective transformation, than 𝑀 and 𝑇∗𝑀 are locally flat.

Kaynakça

  • Aslanci S, Kazimova S and Salimov A A, 2010. Some remarks concerning Riemannian extensions. Ukrainian Mathematical Journal, 62(5): 661-675.
  • Bilen L, 2019. Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension. Journal of the Institute of Science and Technology, 9(1): 389-396.
  • Cruceanu V, Gadea PM and Munoz Masque J, 1995. Para-Hermitian and Para-Kahler Manifolds. Quaderni Inst. Math. Messina, 2: 1-70.
  • Etayo F and Gadea PM, 1992. Paraholomorphically projective vector field. An. St.Univ."Al. I. Cuza" Iaşi Sect. a Mat. (N. S.), 38: 201-210.
  • Gezer A, 2011. On infinitesimal holomorfically projective transformations on the tangent bundles with respect to the Sasaki metric. Proc. Est. Acad. Sci, 60(3): 149-157
  • Hasegawa I and Yamauchi K, 1979. On infinitesimal holomorphically projective transformations in compact Kaehlerian manifolds. Hokkaido Math. J, 8: 214–219.
  • Hasegawa I and Yamauchi K, 2003. Infinitesimal holomorphically projective transformations on the tangent bundles with horizontal lift connection and adapted almost complex structure. J. Hokkaido Univ. Education, 53: 1–8.
  • Hasegawa I and Yamauchi K, 2005. Infinitesimal holomorphically projective transformations on the tangent bundles with complete lift connection. Differ. Geom. Dyn. Syst, 7: 42–48.
  • Iscan M and Magden A, 2008. Infinitesimal paraholomorphically projective transformations on tangent bundles with diagonal lift connection. Differential Geometry - Dynamical Systems, Vol.10: 170-177.
  • Patterson E M and Walker A G, 1952. Riemannian extensions. Quant. J. Math, 3: 19–28.
  • Prvanovic M, 1971. Holomorphically projective transformations in a locally product spaces. Math. Balkanika (N.S.), 1: 195-213.
  • Salimov A A, Iscan M and Etayo F, 2007. Paraholomorphic B-manifold and its properties. Topology and its Application, 154: 925-933.
  • Tarakci O, Gezer A and Salimov A A, 2009. On solutions of IHPT equations on tangent bundle with the metric II+III. Math.Comput. Modelling, 50: 953–958.
  • Yano K, Ishihara S, 1973. Tangent and cotangent bundles. Marcel Dekker, Inc. New York.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Lokman Bilen 0000-0001-8240-5359

Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 13 Mart 2020
Kabul Tarihi 7 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Bilen, L. (2020). Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension. Journal of the Institute of Science and Technology, 10(4), 2872-2880. https://doi.org/10.21597/jist.703428
AMA Bilen L. Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2020;10(4):2872-2880. doi:10.21597/jist.703428
Chicago Bilen, Lokman. “Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension”. Journal of the Institute of Science and Technology 10, sy. 4 (Aralık 2020): 2872-80. https://doi.org/10.21597/jist.703428.
EndNote Bilen L (01 Aralık 2020) Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension. Journal of the Institute of Science and Technology 10 4 2872–2880.
IEEE L. Bilen, “Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 4, ss. 2872–2880, 2020, doi: 10.21597/jist.703428.
ISNAD Bilen, Lokman. “Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension”. Journal of the Institute of Science and Technology 10/4 (Aralık 2020), 2872-2880. https://doi.org/10.21597/jist.703428.
JAMA Bilen L. Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:2872–2880.
MLA Bilen, Lokman. “Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension”. Journal of the Institute of Science and Technology, c. 10, sy. 4, 2020, ss. 2872-80, doi:10.21597/jist.703428.
Vancouver Bilen L. Infinitesimal Paraholomorphically Projective Transformation On Cotangent Bundle With Riemannian Extension. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(4):2872-80.