Araştırma Makalesi
BibTex RIS Kaynak Göster

A_{p1,q1}^{p2,q2}(G,w) Uzayı ve Bazı Topolojik Özellikleri Üzerine

Yıl 2021, , 1468 - 1480, 01.06.2021
https://doi.org/10.21597/jist.804438

Öz

ünimodüler yerel kompakt grup ve olmak üzere olsun. Bu makalede, infimum normlu uzayının bazı önemli topolojik özellikleri incelenmiştir. İlk olarak, uzayının bir Banach uzayı olduğu ve ötelemeler altında invaryant olduğu ispatlanmıştır. Ayrıca uzayından uzayına tanımlı dönüşümünün lineer ve sınırlı olduğu gösterilmiştir.

Kaynakça

  • Arino MA, Muckenhoupt B, 1990. Maximal functions classical Lorentz spaces and Hardy' s inequality with weights for nonincreasing functions. Transactions of the American Mathematical Society, 320(2), 727-735.
  • Avcı H, Gürkanlı AT, 2007. Multipliers and tensor products of Lorentz spaces. Acta Mathematica Scientia, 27(B)(1), 107-116.
  • Bonsall FF, Duncan J, 1973. Complete normed algebras. Springer Verlag, Berlin.
  • Carro MJ, Garcia del AA, Soria J, 1996. Weak-type weights and normable Lorentz spaces. Proceedings of the American Mathematical Society, 124(3), 849-857.
  • Carro MJ, Raposo JA, Soria J, 2007. Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc., 187, no. 877.
  • Folland GB, 1995. A course in abstract harmonic analysis. CRS Press, Boca Raton, Florida.
  • Grafakos L, 2009. Modern Fourier analysis, Second edition. Springer Science+Business Media, New York.
  • Halmos PR, 1974. Measure theory, Second edition. Springer Verlag, New York.
  • Hunt R, 1966. On spaces. Enseign. Math., 12, 249-276.
  • Li H, Sun Q, 2012. Multipliers and tensor products of the weighted Lorentz spaces . Georgian Math. Journal, 19, 721-740.
  • Reiter H, Stegeman JD, 2000. Classical harmonic analysis and locally compact groups, Second edition. Clarendon Press, Oxford.
  • Yap LYH, 1969. Some remarks on convolution operators and spaces. Duke Math. J., 36, 647-658.

On the Space A_{p1,q1}^{p2,q2}(G,w) and Some of Its Topological Properties

Yıl 2021, , 1468 - 1480, 01.06.2021
https://doi.org/10.21597/jist.804438

Öz

Let be a unimodular locally compact group and where . In this paper, we examine some crucial topological properties of the space endowed with the infimum norm . We first prove that becomes a Banach space and invariant under translation. We also show that the mapping is linear and bounded from to .

Kaynakça

  • Arino MA, Muckenhoupt B, 1990. Maximal functions classical Lorentz spaces and Hardy' s inequality with weights for nonincreasing functions. Transactions of the American Mathematical Society, 320(2), 727-735.
  • Avcı H, Gürkanlı AT, 2007. Multipliers and tensor products of Lorentz spaces. Acta Mathematica Scientia, 27(B)(1), 107-116.
  • Bonsall FF, Duncan J, 1973. Complete normed algebras. Springer Verlag, Berlin.
  • Carro MJ, Garcia del AA, Soria J, 1996. Weak-type weights and normable Lorentz spaces. Proceedings of the American Mathematical Society, 124(3), 849-857.
  • Carro MJ, Raposo JA, Soria J, 2007. Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc., 187, no. 877.
  • Folland GB, 1995. A course in abstract harmonic analysis. CRS Press, Boca Raton, Florida.
  • Grafakos L, 2009. Modern Fourier analysis, Second edition. Springer Science+Business Media, New York.
  • Halmos PR, 1974. Measure theory, Second edition. Springer Verlag, New York.
  • Hunt R, 1966. On spaces. Enseign. Math., 12, 249-276.
  • Li H, Sun Q, 2012. Multipliers and tensor products of the weighted Lorentz spaces . Georgian Math. Journal, 19, 721-740.
  • Reiter H, Stegeman JD, 2000. Classical harmonic analysis and locally compact groups, Second edition. Clarendon Press, Oxford.
  • Yap LYH, 1969. Some remarks on convolution operators and spaces. Duke Math. J., 36, 647-658.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Nilay Değirmen 0000-0001-8192-8473

İbrahim Değirmen Bu kişi benim 0000-0001-5669-1881

Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 6 Ekim 2020
Kabul Tarihi 21 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Değirmen, N., & Değirmen, İ. (2021). A_{p1,q1}^{p2,q2}(G,w) Uzayı ve Bazı Topolojik Özellikleri Üzerine. Journal of the Institute of Science and Technology, 11(2), 1468-1480. https://doi.org/10.21597/jist.804438
AMA Değirmen N, Değirmen İ. A_{p1,q1}^{p2,q2}(G,w) Uzayı ve Bazı Topolojik Özellikleri Üzerine. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2021;11(2):1468-1480. doi:10.21597/jist.804438
Chicago Değirmen, Nilay, ve İbrahim Değirmen. “A_{p1,q1}^{p2,q2}(G,w) Uzayı Ve Bazı Topolojik Özellikleri Üzerine”. Journal of the Institute of Science and Technology 11, sy. 2 (Haziran 2021): 1468-80. https://doi.org/10.21597/jist.804438.
EndNote Değirmen N, Değirmen İ (01 Haziran 2021) A_{p1,q1}^{p2,q2}(G,w) Uzayı ve Bazı Topolojik Özellikleri Üzerine. Journal of the Institute of Science and Technology 11 2 1468–1480.
IEEE N. Değirmen ve İ. Değirmen, “A_{p1,q1}^{p2,q2}(G,w) Uzayı ve Bazı Topolojik Özellikleri Üzerine”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 2, ss. 1468–1480, 2021, doi: 10.21597/jist.804438.
ISNAD Değirmen, Nilay - Değirmen, İbrahim. “A_{p1,q1}^{p2,q2}(G,w) Uzayı Ve Bazı Topolojik Özellikleri Üzerine”. Journal of the Institute of Science and Technology 11/2 (Haziran 2021), 1468-1480. https://doi.org/10.21597/jist.804438.
JAMA Değirmen N, Değirmen İ. A_{p1,q1}^{p2,q2}(G,w) Uzayı ve Bazı Topolojik Özellikleri Üzerine. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1468–1480.
MLA Değirmen, Nilay ve İbrahim Değirmen. “A_{p1,q1}^{p2,q2}(G,w) Uzayı Ve Bazı Topolojik Özellikleri Üzerine”. Journal of the Institute of Science and Technology, c. 11, sy. 2, 2021, ss. 1468-80, doi:10.21597/jist.804438.
Vancouver Değirmen N, Değirmen İ. A_{p1,q1}^{p2,q2}(G,w) Uzayı ve Bazı Topolojik Özellikleri Üzerine. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(2):1468-80.