Research Article
BibTex RIS Cite

Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi

Year 2021, , 2001 - 2008, 01.09.2021
https://doi.org/10.21597/jist.877180

Abstract

Bu çalışmada ilk kez Kurşun (Pb) katkı maddesinin ardışık iyonik tabaka adsorpsiyonu ve reaksiyon tekniği (SILAR) kullanılarak cam altlıklar üzerine üretilen Magnezyum oksit (MgO) ince filmler üzerindeki etkisi araştırılmıştır. Numunelerin optik, yapısal ve morfolojik özelliklerinin nasıl etkilendiğini incelemek için Uv-vis Spektroskopi, X-ışını kırınımı (XRD), ve taramalı elektron mikroskobu (SEM) ölçümleri yapılmıştır. Uv-vis Spektroskopi analizinde Pb katkı konsantrasyonlarının artması ile MgO numunelerinin bant boşluklarının 4 eV'den 3.75eV'ye düştüğü kaydedildi. Ayrıca Pb katkısının artmasıyla MgO nanoyapılarının geçirgenlik değerlerinin artmakta olduğunu göstermektedir. XRD ölçümlerine göre, numunelerin kübik yapısının yanı sıra Pb katkı maddesinin artması nedeniyle MgO ince film numunelerinde PbO oluşumları tespit edilmiştir. SEM ölçümleri, tüm numunelerin nanotel yapısına sahip olmasına rağmen, Pb katkı maddesi ile yapılarında ciddi değişiklikler olduğunu gösterdi. Bu sonuçlar ışığında, MgO ince filmler üzerinde Pb katkısının SILAR biriktirme tekniği kullanılarak elde edilebileceğini göstermektedir.

Supporting Institution

Ağrı İbrahim Çeçen Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

PMYO.20.001

References

  • Bayansal F, Gülen Y, Şahin B, Kahraman S, Çetinkara HA, 2015. CuO nanostructures grown by the SILAR method: influence of Pb-doping on the morphological, structural and optical properties. Journal of Alloys and Compounds, 619, 378-382.
  • Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W, 2018. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in microbiology, 9, 790.
  • Carta G, El Habra N, Crociani Rossetto G, Zanella P., Zanella A, Tondello E, 2007. CVD of MgO thin films from bis (methylcyclopentadienyl) magnesium. Chemical vapor deposition, 13(4), 185-189.
  • Choi EH, Oh HJ, Kim YG, Ko JJ, Lim JY, Kim JG, Kang SO, 1998. Measurement of secondary electron emission coefficient (γ) of MgO protective layer with various crystallinities. Japanese journal of applied physics, 37(12S), 7015.
  • Choi YW, Kim J, 2004. Reactive sputtering of magnesium oxide thin film for plasma display panel applications. Thin solid films, 460(1-2), 295-299.
  • Di DR, He ZZ, Sun ZQ, Liu J, 2012. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 8(8), 1233-1241.
  • Diachenko OV, Opanasuyk AS, Kurbatov DI, Cheong H, 2016. Investigation of optical properties of magnesium oxide films obtained by spray pyrolysis technique. In 2016 IEEE 7th International Conference on Advanced Optoelectronics and Lasers (CAOL) (pp. 31-33). IEEE.
  • El Sayed AM, 2018. Modification of the micro-structural and optical properties of nanoparticulate Pb-doped magnesia thin films. Materials Research Express, 5(11), 116403.
  • Ghosh B, Das M, Banerjee P, Das S, 2008. Fabrication and optical properties of SnS thin films by SILAR method. Applied surface science, 254(20), 6436-6440.
  • Gu Y, Yang X, Guan Y, Migliorato MA, Zhang Y, 2016. Enhanced electromechanical performance in metal–MgO–ZnO tunneling diodes due to the insulator layers. Inorganic Chemistry Frontiers, 3(9), 1130-1136.
  • Güney H, İskenderoğlu D, 2018. Synthesis of MgO thin films grown by SILAR technique. Ceramics International, 44(7), 7788-7793.
  • Halder R, Bandyopadhyay S, 2017. Synthesis and optical properties of anion deficient nano MgO. Journal of Alloys and Compounds, 693, 534-542.
  • Hsu WY, Raj R, 1992. MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3. Applied physics letters, 60(25), 3105-3107.
  • Idris MS, Shanmugan S, Devarajan M, Maryam W, 2019. Influence of molar concentration: sol-gel synthesized magnesium oxide thin films for high power light emitting diode thermal management. In IOP Conference Series: Earth and Environmental Science, 268(1).
  • Ishiguro T, Hiroshima Y, Inoue T, 1996. MgO (200) highly oriented films on Si (100) synthesized by ambient-controlled pulsed KrF excimer laser deposition method. Japanese journal of applied physics, 35(6R), 3537.
  • İskenderoğlu D, Güney H, 2019. Effect of annealing on the structural, morphological and optical Properties of MgO nanowall structures grown by SILAR method. Journal of Electronic Materials, 48(9), 5850-5856.
  • Jung HS, Lee JK, Hong KS, Youn HJ, 2002. Ion-induced secondary electron emission behavior of sol–gel-derived MgO thin films used for protective layers in alternating current plasma display panels. Journal of applied physics, 92(5), 2855-2860.
  • Mageshwari K, Sathyamoorthy R, 2013. Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Materials science in semiconductor processing, 16(2), 337-343.
  • Mageshwari K, Mali SS, Sathyamoorthy R, Patil PS, 2013. Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder technology, 249, 456-462.
  • Maiti P, Das PS, Bhattacharya M, Mukherjee S, Saha B, Mullick AK, Mukhopadhyay AK, 2017. Transparent Al+ 3 doped MgO thin films for functional applications. Materials Research Express, 4(8), 086405.
  • Mali SS, Shinde PS, Betty CA, Bhosale PN, Oh YW, Patil PS, 2012. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of physics and chemistry of solids, 73(6), 735-740.
  • Niu F, Hoerman BH, Wessels BW, 2000. Metalorganic molecular beam epitaxy of magnesium oxide on silicon. MRS Online Proceedings Library, 619(1), 149-154.
  • Płóciennik P, Guichaoua D, Zawadzka A, Korcala A, Strzelecki J, Trzaska P, Sahraoui B, 2016. Optical properties of MgO thin films grown by laser ablation technique. Optical and Quantum Electronics, 48(5), 277.
  • Raj AME, Jayachandran M, Sanjeeviraja C, 2010. Fabrication techniques and material properties of dielectric MgO thin films-A status review. CIRP Journal of Manufacturing Science and Technology, 2(2), 92-113.
  • Rajendran V, Deepa B, Mekala R, 2018. Studies on structural, morphological, optical and antibacterial activity of Pure and Cu-doped MgO nanoparticles synthesized by co-precipitation method. Materials Today: Proceedings, 5(2), 8796-8803.
  • Sharma U, Jeevanandam P, 2015. Synthesis of Zn 2+-doped MgO nanoparticles using substituted brucite precursors and studies on their optical properties. Journal of Sol-Gel Science and Technology, 75(3), 635-648.
  • Srivastava V, Sharma YC, Sillanpää M, 2015. Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceramics International, 41(5), 6702-6709.
  • Suryawanshi VN, Varpe AS, Deshpande MD, 2018. Band gap engineering in PbO nanostructured thin films by Mn doping. Thin Solid Films, 645, 87-92.
  • Taşdemirci TÇ, 2019. Study of the physical properties of CuS thin films grown by SILAR method. Optical and Quantum Electronics, 51(7), 1-9.
  • Tellez DL, Yadava YP, Ferreira JM, Aguiar JA, 1999. Chemical and physical stability of MgO with superconductors. Superconductor Science and Technology, 12(1), 18.
  • Tepehan FZ, Ghodsi FE, Ozer N, Tepehan GG, 1999. Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications. Solar energy materials and solar cells, 59(3), 265-275.
  • Tlili M, Jebbari N, Naffouti W, Kamoun NT, 2020. Effect of precursor nature on physical properties of chemically sprayed MgO thin films for optoelectronic application. The European Physical Journal Plus, 135(8), 1-12.
  • Ullah R, Dutta J, 2008. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous materials, 156(1-3), 194-200.
  • Vanheusden K, Warren WL, Voigt JA, Seager CH, Tallant DR, 1995. Impact of Pb doping on the optical and electronic properties of ZnO powders. Applied physics letters, 67(9), 1280-1282.
  • Wu Y, Yang X, Li J, Rao KV, Belova L, 2017. Solution processed room temperature ferromagnetic MgO thin films printed by inkjet technique. Materials Letters, 196, 388-391.
  • Yi X, Wenzhong W, Yitai Q, Li Y, Zhiwen C, 1996. Deposition and microstructural characterization of MgO thin films by a spray pyrolysis method. Surface and Coatings Technology, 82(3), 291-293.
  • Yilmaz M, Aydoğan Ş, 2015. The effect of Pb doping on the characteristic properties of spin coated ZnO thin films: Wrinkle structures. Materials Science in Semiconductor Processing, 40, 162-170.
  • Yoon JG, Kim HK, 1997. Structural characterization of sol-gel derived MgO thin film on Si substrate. Journal-Korean Physical Society, 31, 613-616.
  • Yousefi R, Jamali-Sheini F, Sa’aedi A, Zak AK, Cheraghizade M, Pilban-Jahromi S, Huang NM, 2013. Influence of lead concentration on morphology and optical properties of Pb-doped ZnO nanowires. Ceramics International, 39(8), 9115-9119.
  • Yu HK, 2018. Secondary electron emission properties of Zn-doped MgO thin films grown via electron-beam evaporation. Thin Solid Films, 653, 57-61.
  • Zulkefle H, Ismail LN, Bakar RA, Mamat MH, Rusop M, 2012. Enhancement in dielectric constant and structural properties of sol-gel derived MgO thin film using ZnO/MgO multilayered structure. International Journal of Applied Physics and Mathematics, 2(1), 38.

Investigation of The Effect of Pb Doping on MgO Thin Film

Year 2021, , 2001 - 2008, 01.09.2021
https://doi.org/10.21597/jist.877180

Abstract

In this study, the effect of Lead (Pb) additive on magnesium oxide (MgO) thin films produced on glass substrates using sequential ionic layer adsorption and reaction technique (SILAR) was investigated for the first time. Uv-vis Spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) measurements were performed to examine how the optical, structural and morphological properties of the samples were affected. In the Uv-vis Spectroscopy analysis, it was recorded that the band gaps of the MgO samples decreased from 4 eV to 3.75 eV with the increase of Pb dopant concentrations. It also shows that the permeability values of MgO nanostructures increase with the increase of Pb contribution. According to XRD measurements, PbO formations were detected in MgO thin film samples due to the increase in Pb additive as well as the cubic structure of the samples. SEM measurements showed that, although all of the samples have a nanowire structure, they showed serious changes in their structure with the Pb additive. In the light of these results, it shows that Pb doping on MgO thin films can be obtained by using the SILAR deposition technique.

Project Number

PMYO.20.001

References

  • Bayansal F, Gülen Y, Şahin B, Kahraman S, Çetinkara HA, 2015. CuO nanostructures grown by the SILAR method: influence of Pb-doping on the morphological, structural and optical properties. Journal of Alloys and Compounds, 619, 378-382.
  • Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W, 2018. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in microbiology, 9, 790.
  • Carta G, El Habra N, Crociani Rossetto G, Zanella P., Zanella A, Tondello E, 2007. CVD of MgO thin films from bis (methylcyclopentadienyl) magnesium. Chemical vapor deposition, 13(4), 185-189.
  • Choi EH, Oh HJ, Kim YG, Ko JJ, Lim JY, Kim JG, Kang SO, 1998. Measurement of secondary electron emission coefficient (γ) of MgO protective layer with various crystallinities. Japanese journal of applied physics, 37(12S), 7015.
  • Choi YW, Kim J, 2004. Reactive sputtering of magnesium oxide thin film for plasma display panel applications. Thin solid films, 460(1-2), 295-299.
  • Di DR, He ZZ, Sun ZQ, Liu J, 2012. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 8(8), 1233-1241.
  • Diachenko OV, Opanasuyk AS, Kurbatov DI, Cheong H, 2016. Investigation of optical properties of magnesium oxide films obtained by spray pyrolysis technique. In 2016 IEEE 7th International Conference on Advanced Optoelectronics and Lasers (CAOL) (pp. 31-33). IEEE.
  • El Sayed AM, 2018. Modification of the micro-structural and optical properties of nanoparticulate Pb-doped magnesia thin films. Materials Research Express, 5(11), 116403.
  • Ghosh B, Das M, Banerjee P, Das S, 2008. Fabrication and optical properties of SnS thin films by SILAR method. Applied surface science, 254(20), 6436-6440.
  • Gu Y, Yang X, Guan Y, Migliorato MA, Zhang Y, 2016. Enhanced electromechanical performance in metal–MgO–ZnO tunneling diodes due to the insulator layers. Inorganic Chemistry Frontiers, 3(9), 1130-1136.
  • Güney H, İskenderoğlu D, 2018. Synthesis of MgO thin films grown by SILAR technique. Ceramics International, 44(7), 7788-7793.
  • Halder R, Bandyopadhyay S, 2017. Synthesis and optical properties of anion deficient nano MgO. Journal of Alloys and Compounds, 693, 534-542.
  • Hsu WY, Raj R, 1992. MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3. Applied physics letters, 60(25), 3105-3107.
  • Idris MS, Shanmugan S, Devarajan M, Maryam W, 2019. Influence of molar concentration: sol-gel synthesized magnesium oxide thin films for high power light emitting diode thermal management. In IOP Conference Series: Earth and Environmental Science, 268(1).
  • Ishiguro T, Hiroshima Y, Inoue T, 1996. MgO (200) highly oriented films on Si (100) synthesized by ambient-controlled pulsed KrF excimer laser deposition method. Japanese journal of applied physics, 35(6R), 3537.
  • İskenderoğlu D, Güney H, 2019. Effect of annealing on the structural, morphological and optical Properties of MgO nanowall structures grown by SILAR method. Journal of Electronic Materials, 48(9), 5850-5856.
  • Jung HS, Lee JK, Hong KS, Youn HJ, 2002. Ion-induced secondary electron emission behavior of sol–gel-derived MgO thin films used for protective layers in alternating current plasma display panels. Journal of applied physics, 92(5), 2855-2860.
  • Mageshwari K, Sathyamoorthy R, 2013. Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Materials science in semiconductor processing, 16(2), 337-343.
  • Mageshwari K, Mali SS, Sathyamoorthy R, Patil PS, 2013. Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder technology, 249, 456-462.
  • Maiti P, Das PS, Bhattacharya M, Mukherjee S, Saha B, Mullick AK, Mukhopadhyay AK, 2017. Transparent Al+ 3 doped MgO thin films for functional applications. Materials Research Express, 4(8), 086405.
  • Mali SS, Shinde PS, Betty CA, Bhosale PN, Oh YW, Patil PS, 2012. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of physics and chemistry of solids, 73(6), 735-740.
  • Niu F, Hoerman BH, Wessels BW, 2000. Metalorganic molecular beam epitaxy of magnesium oxide on silicon. MRS Online Proceedings Library, 619(1), 149-154.
  • Płóciennik P, Guichaoua D, Zawadzka A, Korcala A, Strzelecki J, Trzaska P, Sahraoui B, 2016. Optical properties of MgO thin films grown by laser ablation technique. Optical and Quantum Electronics, 48(5), 277.
  • Raj AME, Jayachandran M, Sanjeeviraja C, 2010. Fabrication techniques and material properties of dielectric MgO thin films-A status review. CIRP Journal of Manufacturing Science and Technology, 2(2), 92-113.
  • Rajendran V, Deepa B, Mekala R, 2018. Studies on structural, morphological, optical and antibacterial activity of Pure and Cu-doped MgO nanoparticles synthesized by co-precipitation method. Materials Today: Proceedings, 5(2), 8796-8803.
  • Sharma U, Jeevanandam P, 2015. Synthesis of Zn 2+-doped MgO nanoparticles using substituted brucite precursors and studies on their optical properties. Journal of Sol-Gel Science and Technology, 75(3), 635-648.
  • Srivastava V, Sharma YC, Sillanpää M, 2015. Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceramics International, 41(5), 6702-6709.
  • Suryawanshi VN, Varpe AS, Deshpande MD, 2018. Band gap engineering in PbO nanostructured thin films by Mn doping. Thin Solid Films, 645, 87-92.
  • Taşdemirci TÇ, 2019. Study of the physical properties of CuS thin films grown by SILAR method. Optical and Quantum Electronics, 51(7), 1-9.
  • Tellez DL, Yadava YP, Ferreira JM, Aguiar JA, 1999. Chemical and physical stability of MgO with superconductors. Superconductor Science and Technology, 12(1), 18.
  • Tepehan FZ, Ghodsi FE, Ozer N, Tepehan GG, 1999. Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications. Solar energy materials and solar cells, 59(3), 265-275.
  • Tlili M, Jebbari N, Naffouti W, Kamoun NT, 2020. Effect of precursor nature on physical properties of chemically sprayed MgO thin films for optoelectronic application. The European Physical Journal Plus, 135(8), 1-12.
  • Ullah R, Dutta J, 2008. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous materials, 156(1-3), 194-200.
  • Vanheusden K, Warren WL, Voigt JA, Seager CH, Tallant DR, 1995. Impact of Pb doping on the optical and electronic properties of ZnO powders. Applied physics letters, 67(9), 1280-1282.
  • Wu Y, Yang X, Li J, Rao KV, Belova L, 2017. Solution processed room temperature ferromagnetic MgO thin films printed by inkjet technique. Materials Letters, 196, 388-391.
  • Yi X, Wenzhong W, Yitai Q, Li Y, Zhiwen C, 1996. Deposition and microstructural characterization of MgO thin films by a spray pyrolysis method. Surface and Coatings Technology, 82(3), 291-293.
  • Yilmaz M, Aydoğan Ş, 2015. The effect of Pb doping on the characteristic properties of spin coated ZnO thin films: Wrinkle structures. Materials Science in Semiconductor Processing, 40, 162-170.
  • Yoon JG, Kim HK, 1997. Structural characterization of sol-gel derived MgO thin film on Si substrate. Journal-Korean Physical Society, 31, 613-616.
  • Yousefi R, Jamali-Sheini F, Sa’aedi A, Zak AK, Cheraghizade M, Pilban-Jahromi S, Huang NM, 2013. Influence of lead concentration on morphology and optical properties of Pb-doped ZnO nanowires. Ceramics International, 39(8), 9115-9119.
  • Yu HK, 2018. Secondary electron emission properties of Zn-doped MgO thin films grown via electron-beam evaporation. Thin Solid Films, 653, 57-61.
  • Zulkefle H, Ismail LN, Bakar RA, Mamat MH, Rusop M, 2012. Enhancement in dielectric constant and structural properties of sol-gel derived MgO thin film using ZnO/MgO multilayered structure. International Journal of Applied Physics and Mathematics, 2(1), 38.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Ahmet Taşer 0000-0003-4563-160X

Muhammed Gulduren 0000-0002-9769-0559

Harun Güney 0000-0001-9877-2591

Project Number PMYO.20.001
Publication Date September 1, 2021
Submission Date February 9, 2021
Acceptance Date May 30, 2021
Published in Issue Year 2021

Cite

APA Taşer, A., Gulduren, M., & Güney, H. (2021). Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi. Journal of the Institute of Science and Technology, 11(3), 2001-2008. https://doi.org/10.21597/jist.877180
AMA Taşer A, Gulduren M, Güney H. Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi. J. Inst. Sci. and Tech. September 2021;11(3):2001-2008. doi:10.21597/jist.877180
Chicago Taşer, Ahmet, Muhammed Gulduren, and Harun Güney. “Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi”. Journal of the Institute of Science and Technology 11, no. 3 (September 2021): 2001-8. https://doi.org/10.21597/jist.877180.
EndNote Taşer A, Gulduren M, Güney H (September 1, 2021) Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi. Journal of the Institute of Science and Technology 11 3 2001–2008.
IEEE A. Taşer, M. Gulduren, and H. Güney, “Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 11, no. 3, pp. 2001–2008, 2021, doi: 10.21597/jist.877180.
ISNAD Taşer, Ahmet et al. “Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi”. Journal of the Institute of Science and Technology 11/3 (September 2021), 2001-2008. https://doi.org/10.21597/jist.877180.
JAMA Taşer A, Gulduren M, Güney H. Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi. J. Inst. Sci. and Tech. 2021;11:2001–2008.
MLA Taşer, Ahmet et al. “Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 3, 2021, pp. 2001-8, doi:10.21597/jist.877180.
Vancouver Taşer A, Gulduren M, Güney H. Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi. J. Inst. Sci. and Tech. 2021;11(3):2001-8.