Araştırma Makalesi
BibTex RIS Kaynak Göster

Chemical Activity Calculations with Density Functional Theory of 2-chloro-1-(6-flouro-3,4-dihydro-2H-chromen-2-yl)ethanone

Yıl 2022, , 217 - 226, 01.03.2022
https://doi.org/10.21597/jist.942542

Öz

In this study, the 2-chloro-1-(6-flouro-3,4-dihydro-2H-chromen-2yl)ethanone molecule which was synthesized and whose structure was illuminated by X-ray diffraction method in previously study was determined by chemical activity, second order nonlinear optical properties and interactions with DNA bases were investigated. Density functional theory was chosen as the theoretical method because of it is significant values close to experimental and its computational cost. There is no imaginary frequencies was observed as a result of the frequency calculations also supported the optimized structure and thus other properties were obtained and interpreted from the optimized structure. The stable molecular geometry of the studied molecule was obtained by optimization. DFT/B3LYP/6-311++G(d,p) bases set was used in all theoretical calculations. It was seen that the geometric parameter values of the optimized molecule were compatible with the experimental data and thus other properties obtained through the optimized structure were calculated and interpreted. In the calculation of the chemical activity of the molecule, hardness, softness and other chemical activity parameters were obtained by frontier molecular orbital (HOMO, LUMO) energies. Molecular electrostatic potential (MEP), charge population and Fukui functional analaysis was determined in which regions the structure is susceptible to chemical interactions. Inaddition to these, molecular interactions, Hirshfeld surface maps, interaction percentages of atoms with each other (2D-finger print) were examined by Hirshfeld surface analysis.

Kaynakça

  • Becke AD, 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys., 38 (6): 3098-3100.
  • Becke AD, 1993. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys., 98: 372-377.
  • Cramar, CJ, 2004. Essentials of Computational Chemistry, Second Edition, John Wiley&Sons, Ltd. England, S. 315.
  • Ekici Ö, Demircioğlu Z, Ersanlı CC, Çukurovalı A, 2020. Experimental and theoretical approach: Chemical activity, charge transfer of DNA/ECT, thermodinamic, spectroscopic, structural and electronic properties of N-(4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl)acetamide molecule. J. Mol. Struct., 1204: 127513.
  • Fukui K, 1982. Role of frontier orbitals in chemical reactions. Science, 218 (4574): 747–754.
  • Gaussian 09, Revision C.01, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2009.
  • Haress NG, El-Emam A, Al-Deab OA, Panicker CY, Al-Saadi A, Van Alsenols C, Ahmad War J, 2015. Vibrational spectroscopic and molecular docking study of 2-benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile, a potential chem. Other apeutic agent. Spectrochim. Acta A, 137:569-580.
  • Lee C, Yang W, Parr RG, 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev., 37: 785-789.
  • Lewars E, 2003. Computational Chemistry. Kluwer Academic Publishers, S. 471. Dordrecht.
  • Morell C, Ayers P, Grand A, Gutierrez-Oliva S, Toro-Labbe A, 2008. Explaining reaction mechanisms using the dual descriptor: A complementary tool to the molecular electrostatic potential. Phys. Chem.-Chem. Phys., 10: 7239-7246, 2008.
  • Natorajan S, Shanmugam G, Martin SA, 2008. Growth and characterization of a new semi organic NLO material: L‐tyrosine hydrochloride.Cryst. Res. Technol., 43: 561-564.
  • Samanta T, Dey L, Dinda J, Chattopadhyay SK, Seth SK, 2014. Structural characterization and Hirshfeld surface analysis of a CoIIcomplex with imidazo[1,2-a]pyridine. J. Mol. Struct., 1068: 58-70.
  • Shen Z, Mao Q-X, Ge J-L, Tu Y-R, Wang Y, 2014. Crystal structure of 2-chloro-1-(6-fluoro-3,4-dihydro-2H-chromen-2yl)ethanone. Acta Cryst., E70: o1087.
  • Toy M, Tanak H, 2016. Molecular structure and vibrational and chemical shift assignments of 3’-chloro-4-dimethylamino azobenzene by DFTcalculations. Spectrochim. Acta A, 152: 530-536.
  • Wolff DJGSK, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA, 2012. Crystal Explorer, Version 3.1.
  • Yang W, Parr RG, 1985. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci., 82: 6723-6726.

2-kloro-1-(6-floro-3,4-dihidro-2H-kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları

Yıl 2022, , 217 - 226, 01.03.2022
https://doi.org/10.21597/jist.942542

Öz

Bu çalışmada, sentezi yapılmış ve X-ışını kırınımı yöntemi ile yapısı aydınlatılmış 2-kloro-1-(6-floro-3,4-dihidro-2H-kromen-2yl) ethanon molekülünün kimyasal aktivitesi, ikinci dereceden lineer olmayan optik özellikleri ve DNA bazları ile etkileşimi üzerine kuramsal çalışmalar yapılmıştır. Kuramsal yöntem olarak, deneysel çalışmalara yakın ve anlamlı değerler vermesi ayrıca hesapsal maliyeti nedeniyle Yoğunluk Fonksiyonel Kuramı (YFK) seçildi. Çalışılan molekülün kararlı moleküler geometrisi optimizasyon yapılarak elde edildi. Tüm kuramsal hesaplamalarda YFK/B3LYP/6-311++G(d,p) baz seti kullanıldı. Optimize edilmiş molekülün geometrik parametre değerlerinin deneysel verilerle uyumlu olduğu görüldü. Frekans hesaplamaları sonucunda sanal frekans verisinin gözlenmemesi de yapının başarılı olarak optimize edildiğini destekledi. Böylece optimize yapı üzerinden elde edilen diğer özellikler hesaplanarak yorumlandı. Molekülün kimyasal aktivitesinin hesaplanmasında sınır moleküler orbital (HOMO, LUMO) enerjileri kullanılarak sertlik, yumuşaklık ve diğer kimyasal aktivite parametreleri elde edildi. Moleküler elektrostatik potansiyel (MEP), yük popülasyon ve Fukui fonsiyon analizleri ile yapının hangi bölgelerde kimyasal etkileşime yatkın olduğu belirlendi. Bunların yanı sıra Hirshfeld yüzey analizi ile moleküler etkileşimler, Hirshfeld yüzey haritaları, atomların birbirleriyle etkileşim yüzdeleri 2 boyutlu-parmak izi tayini ile incelendi.

Kaynakça

  • Becke AD, 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys., 38 (6): 3098-3100.
  • Becke AD, 1993. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys., 98: 372-377.
  • Cramar, CJ, 2004. Essentials of Computational Chemistry, Second Edition, John Wiley&Sons, Ltd. England, S. 315.
  • Ekici Ö, Demircioğlu Z, Ersanlı CC, Çukurovalı A, 2020. Experimental and theoretical approach: Chemical activity, charge transfer of DNA/ECT, thermodinamic, spectroscopic, structural and electronic properties of N-(4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl)acetamide molecule. J. Mol. Struct., 1204: 127513.
  • Fukui K, 1982. Role of frontier orbitals in chemical reactions. Science, 218 (4574): 747–754.
  • Gaussian 09, Revision C.01, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2009.
  • Haress NG, El-Emam A, Al-Deab OA, Panicker CY, Al-Saadi A, Van Alsenols C, Ahmad War J, 2015. Vibrational spectroscopic and molecular docking study of 2-benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile, a potential chem. Other apeutic agent. Spectrochim. Acta A, 137:569-580.
  • Lee C, Yang W, Parr RG, 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev., 37: 785-789.
  • Lewars E, 2003. Computational Chemistry. Kluwer Academic Publishers, S. 471. Dordrecht.
  • Morell C, Ayers P, Grand A, Gutierrez-Oliva S, Toro-Labbe A, 2008. Explaining reaction mechanisms using the dual descriptor: A complementary tool to the molecular electrostatic potential. Phys. Chem.-Chem. Phys., 10: 7239-7246, 2008.
  • Natorajan S, Shanmugam G, Martin SA, 2008. Growth and characterization of a new semi organic NLO material: L‐tyrosine hydrochloride.Cryst. Res. Technol., 43: 561-564.
  • Samanta T, Dey L, Dinda J, Chattopadhyay SK, Seth SK, 2014. Structural characterization and Hirshfeld surface analysis of a CoIIcomplex with imidazo[1,2-a]pyridine. J. Mol. Struct., 1068: 58-70.
  • Shen Z, Mao Q-X, Ge J-L, Tu Y-R, Wang Y, 2014. Crystal structure of 2-chloro-1-(6-fluoro-3,4-dihydro-2H-chromen-2yl)ethanone. Acta Cryst., E70: o1087.
  • Toy M, Tanak H, 2016. Molecular structure and vibrational and chemical shift assignments of 3’-chloro-4-dimethylamino azobenzene by DFTcalculations. Spectrochim. Acta A, 152: 530-536.
  • Wolff DJGSK, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA, 2012. Crystal Explorer, Version 3.1.
  • Yang W, Parr RG, 1985. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci., 82: 6723-6726.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Fizik / Physics
Yazarlar

Zeynep Demircioğlu 0000-0001-9538-9140

Serap Uzun 0000-0002-2982-8376

Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 25 Mayıs 2021
Kabul Tarihi 13 Kasım 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Demircioğlu, Z., & Uzun, S. (2022). 2-kloro-1-(6-floro-3,4-dihidro-2H-kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları. Journal of the Institute of Science and Technology, 12(1), 217-226. https://doi.org/10.21597/jist.942542
AMA Demircioğlu Z, Uzun S. 2-kloro-1-(6-floro-3,4-dihidro-2H-kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları. Iğdır Üniv. Fen Bil Enst. Der. Mart 2022;12(1):217-226. doi:10.21597/jist.942542
Chicago Demircioğlu, Zeynep, ve Serap Uzun. “2-Kloro-1-(6-Floro-3,4-Dihidro-2H-Kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları”. Journal of the Institute of Science and Technology 12, sy. 1 (Mart 2022): 217-26. https://doi.org/10.21597/jist.942542.
EndNote Demircioğlu Z, Uzun S (01 Mart 2022) 2-kloro-1-(6-floro-3,4-dihidro-2H-kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları. Journal of the Institute of Science and Technology 12 1 217–226.
IEEE Z. Demircioğlu ve S. Uzun, “2-kloro-1-(6-floro-3,4-dihidro-2H-kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 1, ss. 217–226, 2022, doi: 10.21597/jist.942542.
ISNAD Demircioğlu, Zeynep - Uzun, Serap. “2-Kloro-1-(6-Floro-3,4-Dihidro-2H-Kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları”. Journal of the Institute of Science and Technology 12/1 (Mart 2022), 217-226. https://doi.org/10.21597/jist.942542.
JAMA Demircioğlu Z, Uzun S. 2-kloro-1-(6-floro-3,4-dihidro-2H-kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:217–226.
MLA Demircioğlu, Zeynep ve Serap Uzun. “2-Kloro-1-(6-Floro-3,4-Dihidro-2H-Kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları”. Journal of the Institute of Science and Technology, c. 12, sy. 1, 2022, ss. 217-26, doi:10.21597/jist.942542.
Vancouver Demircioğlu Z, Uzun S. 2-kloro-1-(6-floro-3,4-dihidro-2H-kromen-2yl)ethanon Yapısının Yoğunluk Fonksiyonel Kuramı İle Kimyasal Aktivite Hesaplamaları. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(1):217-26.