Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the yellow light center in GaN p-i-n structure grown by MOCVD with electro-optical measurements

Yıl 2022, , 207 - 216, 01.03.2022
https://doi.org/10.21597/jist.962671

Öz

In this study, GaN p-i-n structure grown by metal-organic vapor phase epitaxy was investigated by temperature-dependent current-voltage and electroluminescence (EL) measurements. It has been observed that the GaN p-i-n structure emits yellow light with a peak energy of 2.2 eV under 50 mA injection current corresponding to the space charge limited region at forward voltage. In addition, the electric field dependence of the mobility derived from the space-charged region was determined to be Poole-Frenkel and the thermal energy gap was calculated as 0.299 eV. This calculated energy range was supported by the results obtained from the EL measurement.

Kaynakça

  • Amano H, 2016. Development of GaN-Based Blue LEDs, Metalorganic Vapor Phase Epitaxy of GaN, Related Materials. Progress in Crystal Growth, Characterization of Materials, 62 (2): 126-135.
  • Arifin P, Sugianto, Subagio A, Sutanto H, Dwiputra D, Florena F F, Keintjem A C, Khaeroni R, 2020. Room-Temperature Photoluminescence of Mg-Doped GaN Thin Films Grown by Plasma-Assisted MOCVD. AIP Advances, 10: 045123.
  • Avrutin V, Silversmith D J, Mori Y, Kawamura F, Kitaoka Y, Morkoc H, 2010. Growth of Bulk GaN, AlN: Progress, Challenges. In Proceedings of the IEEE, 98 (7): 1302–1315.
  • Ayarcı N, Özdemir O, Bozkurt K, Ramdane A, Belahsene S, Martinez A, 2016. Discrimination of Carrier Conduction Mechanisms of InP/InGaAsP/InAs/InP Laser Structure Through J–V–T Measurements. IEEE Transactıons on Electron Devıces, 63 (5): 1866–1870.
  • Ayarcı Kuruoğlu N, Özdemir O, Bozkurt K, Sundaram S, Salvestrini, J-P, Ougazzaden, A. Gaimard Q, Belahsene S. Merghem K, Ramdane A, 2017. Dc, Ac Electrical Response of MOCVD Grown GaN in P-i-n Structure, Assessed through I – V, Admittance Measurement. Journal of Physics D: Applied Physics 50 (50): 505109.
  • Ayarcı Kuruoğlu N, Özdemir O, Bozkurt K, 2017. Betavoltaic Study of a GaN pin Structure Grown by Metal-Organic Vapour Phase Epitaxy with a Ni-63 Source. Thin Solid Films, 636: 746-750.
  • Belahsene S, Al Saqri N.A, Jameel D, Mesli A, Martinez A, De Sanoit J, Ougazzaden A, Salvestrini J P, Ramdane A, Henini M, 2015. Analysis of Deep Level Defects in GaN P-i-n Diodes after Beta Particle Irradiation. Electronics, 4 (4): 1090–1100.
  • Berleb S, Wolfgang B, 2002. Dispersive Electron Transport in tris(8-Hydroxyquinoline) Aluminum (Alq3) Probed by Impedance Spectroscopy. Physical review letters, 89 (28): 286601.
  • Blom P W M, Vissenberg, M C J M, 1998. Dispersive Hole Transport in Poly (p -Phenylene Vinylene). Physical review letters, 80 (17): 3819–22.
  • Bozkurt K, Özdemir Ö, Ayarcı Kuruoğlu N, Alshehrı B, Dogheche K, Gaimard Q, Ramdane A, Dogheche E, 2019. Impact of Trap States on Inductive Phenomena in 30% InGaN/GaN MQW LED Devices. Journal of Physics D: Applied Physics, 52 (10): 105102.
  • Cao X A, Sandvik P M, LeBoeuf S F, Arthur S D, 2003. Defect Generation in InGaN/GaN Light-Emitting Diodes under Forward, Reverse Electrical Stresses. Microelectronics Reliability, 43 (12): 1987–91.
  • Chichibu S F, Shima K, Kojima K, Ishibashi S, Uedono A, 2020. Origin, Dynamic Properties of Major Intrinsic Nonradiative Recombination Centers in Wide Bandgap Nitride. Semiconductors, 11280 (10): 112800B.
  • Dreyer C E, Alkauskas A, Lyons J L, Speck J S, Van de Walle C G, 2016. Gallium Vacancy Complexes as a Cause of Shockley-Read-Hall Recombination in III-Nitride Light Emitters. Applied Physics Letters, 108: 141101.
  • Gill W D, 1972. Drift Mobilities in Amorphous Charge‐transfer Complexes of Trinitrofluorenone, Poly‐n‐vinylcarbazole. Journal of Applied Physics, 43(12): 5033.
  • Gonzolez G, 2015. Quantum Theory of Space Charge Limited Current in Solids. Journal of Applied Physics, 117 (8): 22–25.
  • Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B, Schlotter P, 1998. Nature of the 2.8 eV Photoluminescence B, in Mg Doped GaN. Applied Physics Letters, 72: 1326-1328.
  • Ke W-C, Jian S R, Chen I C, Jang J S-C, Chen W-K, Juang J-Y, 2012. Influence of Mg-containing precursor flow rate on the structural, electrical and mechanical properties of Mg-doped GaN thin films. Materials Chemistry and Physics, 136 (2-3): 796–801
  • Lampert M A, Mark P, 1970. Current Injection in Solids Current Injection in Solids. Semiconductors and Semimetals, Elsevier, 6: 1-96.
  • Lee I-H, Polyakov A Y, Smirnov N B, Zinovyev R A, Bae K-B, Chung T-H, Hwang S-M, Baek J-H, Pearton S-J,2017. Changes in Electron, Hole Traps in GaN-Based Light Emitting Diodes from near-UV to Green Spectral Ranges. Applied Physics Letters, 110 (19): 192107.
  • Liu L, Edgar J H, 2002. Substrates for Gallium Nitride Epitaxy. Materials Science, Engineering: R: Reports, 37 (3): 61–127.
  • Martens H, Brom H, Blom P, 1999. Frequency-Dependent Electrical Response of Holes in Poly(p-Phenylene Vinylene). Physical Review B, 60 (12): R8489--R8492.
  • Maruska H P, Stevenson D A, 1973. Violet Luminescence of Mg-Doped GaN. Applied Physics Letters, 22: 303.
  • Maruska H P, Tietjen J J, 1969. The Preparation, Properties of Vapor-Deposited Single-Crystal-Line GaN. Applied Physics Letters, 15: 327.
  • Munson C E, Gaimard Q, Merghem K, Sundaram S, Rogers D J, Sanoit J, Voss P L, Ramdane A, Salvestrini J P, Ougazzaden A, 2018. Modeling, Design, Fabrication, Experimentation of a GaN-Based, 63Ni Betavoltaic Battery. Journal of Physics D: Applied Physics, 51: 035101.
  • Murayama M, Nakayama Y, Yamazaki K, Hoshina Y, Watanabe H, Fuutagawa N, Kawanishi H, Uemura T, Narui H, 2018. Watt-Class Green (530 nm) , Blue (465 nm) Laser Diodes. Physica Status Solidi (A) Applications, Materials Science 215 (10): 1700513.
  • Nakamura S, 1998. The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes, Laser Diodes. Science, 281 (5379): 956–61.
  • Nakano Y, Takashi J, 2002. Electrical Characterization of Acceptor Levels in Mg-Doped GaN. Journal of Applied Physics, 92: 5590.
  • Narayanan V, Lorenz K, Kim W, Mahajan S, 2002. Gallium Nitride Epitaxy on (0001) Sapphire. Philosophical Magazine A, 82 (5): 885–912.
  • Ning X J, Chien, F R, Pirouz P, Yang J W, Khan M A, 1996. Growth Defects in GaN Films on Sapphire: The Probable Origin of Threading Dislocations. Journal of Materials Research, 11 (3): 580–92.
  • Novikov S V, Dunlap D H, Kenkre V M, Parris P E, Vannikov A V, 1998. Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials. Physical Review Letters, 81 (20): 4472–75.
  • O’Hanlon T J, Zhu T, Massabuau F C P, Oliver R A. 2021. Dislocations at Coalescence Boundaries in Heteroepitaxial GaN/Sapphire Studied after the Epitaxial Layer Has Completely Coalesced. Ultramicroscopy, 113258.
  • Oh E, Park H, Park Y, 1998. Excitation Density Dependence of Photoluminescence in GaN:Mg. Applied Physics Letters, 72: 70.
  • Pimputkar S, Speck J S, DenBaars S P, Nakamura S, 2009. Prospects for LED Lighting. Nat Photonics, 3 (4): 180–82.
  • Reshchikov M A, Albarakati N M, Monavarian M, Avrutin V, Morkoç H, 2018. Thermal Quenching of the Yellow Luminescence in GaN. Journal of Applied Physics, 123: 161520
  • Reshchikov M A, Morko̧ç H, 2006. Luminescence from Defects in GaN. In Physica B: Condensed Matter, 376-377: 428-431.
  • Reshchikov M A, Morko̧ç H, 2005. Luminescence Properties of Defects in GaN. Journal of Applied Physics, 97: 061301
  • Shan L-W, Liu Z-Y, Lin M-P, Yu C-J, Hsieh K-C, Wu M-C, 2017. Electrical Analyses of GaN PIN Diodes Grown on Patterned Sapphire Substrates. Journal of Vacuum Science and Technology B, 35: 052203.
  • Sheremet V, Gheshlaghi N, Sözen M, Elçi M, Sheremet N, Aydınlı A, Altuntaş I, Ding K, Avrutin V, Özgür Ü, Morkoç H, 2018. InGaN Stress Compensation Layers in InGaN/GaN Blue LEDs with Step Graded Electron Injectors. Superlattices and Microstructures, 116: 253-261.
  • Walker D, Saxler A, Kung P, Zhang X, Hamilton M, Diaz J, Razeghi M, 1998. Visible-Blind GaN PIN Photodiodes. Applied Physics Letters, 72 (25): 366–67.
  • Soh C B, Chua S J, Lim H F, Chi D Z, Tripathy S, Liu W, 2004. Assignment of Deep Levels Causing Yellow Luminescence in GaN. Journal of Applied Physics, 96: 1341.
  • Sui Y P, Guang H Y, 2011. Effect of Mg Doping on the Photoluminescence of GaN:Mg Films by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy. Chinese Physics Letters, 28 (6): 067807.
  • Tan S, 2020. GaN-Based LEDs Using Homo-Epitaxial Technology, the Progress, Challenges of HVPE Method. IOP Conference Series: Materials Science, Engineering, 729: 012004.
  • Usami S, Miyagoshi R, Tanaka A, Nagamatsu K, Kushimoto M, Deki M, Nitta S, Honda Y, Amano H, 2017. Effect of Dislocations on the Growth of P-Type GaN, on the Characteristics of p–n Diodes. Physica Status Solidi (A), 214: 1600837
  • Ves S, Venkateswaran U D, Loa I, Syassen K, 2000. Pressure Dependence of the Blue Luminescence in Mg-Doped GaN. Applied Physics Letters, 77: 2536.
  • Wang W, Liao C, Chang Y, Lee Y, Ho C, Wu M, 2013. DLTS Analyses of GaN P-i-n Diodes Grown on Conventional, Patterned Sapphire Substrates. IEEE Electron Device Letters, 34 (11): 1376-1378.
  • Wang Y, Huynh K, Liao ME, Yu H, Bai T, Tweedie J, Breckenridge M H, Collazo R, Sitar Z, Bockowski M, Liu Y, Goorsky M S, 2020. Strain Recovery, Defect Characterization in Mg-Implanted Homoepitaxial GaN on High-Quality GaN Substrates. Physica Status Solidi (B) Basic Research, 257 (4): 1900705.
  • Yang W, Li D, He J, Wang C, Hu X, 2014. Temperature‐dependent Ac Current‐voltage‐capacitance Characteristics of GaN‐based Light‐emitting Diodes under High Forward Bias. Physica Status Solidi C, 11 (3‐4): 714–17.
  • Yoon Y J, Lee J S, Kang I M, Lee J H, Kim D S, 2020. Design, Analysis of Gallium Nitride-Based p-i-n Diode Structure for Betavoltaic Cell with Enhanced Output Power Density. Micromachines, 11: 1100.
  • Zhang H, Shih C-W, Martin D, Caut A, Carlin J-F, Butté R, Grandjean N, 2019. Short Cavity InGaN-Based Laser Diodes with Cavity Length below 300 um. Semiconductor Science, Technology, 34: 085005.

MOCVD ile büyütülen GaN p-i-n yapısındaki sarı ışık merkezinin elektro-optik ölçümlerle incelenmesi

Yıl 2022, , 207 - 216, 01.03.2022
https://doi.org/10.21597/jist.962671

Öz

Bu çalışmada, metal organik buhar fazlı epitaksi ile üretilmiş GaN p-i-n yapı, elektrolüminesans (EL) ve sıcaklığa akım-gerilim ölçümleriyle incelenmiştir. GaN p-i-n yapının, düz besleme geriliminde uzay yükü sınırlamalı bölgeye karşılık gelen 50 mA enjeksiyon akımı altında, tepe noktası 2.2 eV enerjisinde olan sarı ışık yaydığı gözlenmiştir. Ayrıca, uzay yükü sınırlamalı bölgeden türetilen mobilitenin, elektrik alan bağlılığının Poole-Frenkel türünde olduğu saptanmış ve termal enerji aralığı 0.299 eV olarak hesaplanmıştır. Hesaplanan bu enerji aralığı, EL ölçümünden elde edilen sonuçlarla desteklenmiştir.

Kaynakça

  • Amano H, 2016. Development of GaN-Based Blue LEDs, Metalorganic Vapor Phase Epitaxy of GaN, Related Materials. Progress in Crystal Growth, Characterization of Materials, 62 (2): 126-135.
  • Arifin P, Sugianto, Subagio A, Sutanto H, Dwiputra D, Florena F F, Keintjem A C, Khaeroni R, 2020. Room-Temperature Photoluminescence of Mg-Doped GaN Thin Films Grown by Plasma-Assisted MOCVD. AIP Advances, 10: 045123.
  • Avrutin V, Silversmith D J, Mori Y, Kawamura F, Kitaoka Y, Morkoc H, 2010. Growth of Bulk GaN, AlN: Progress, Challenges. In Proceedings of the IEEE, 98 (7): 1302–1315.
  • Ayarcı N, Özdemir O, Bozkurt K, Ramdane A, Belahsene S, Martinez A, 2016. Discrimination of Carrier Conduction Mechanisms of InP/InGaAsP/InAs/InP Laser Structure Through J–V–T Measurements. IEEE Transactıons on Electron Devıces, 63 (5): 1866–1870.
  • Ayarcı Kuruoğlu N, Özdemir O, Bozkurt K, Sundaram S, Salvestrini, J-P, Ougazzaden, A. Gaimard Q, Belahsene S. Merghem K, Ramdane A, 2017. Dc, Ac Electrical Response of MOCVD Grown GaN in P-i-n Structure, Assessed through I – V, Admittance Measurement. Journal of Physics D: Applied Physics 50 (50): 505109.
  • Ayarcı Kuruoğlu N, Özdemir O, Bozkurt K, 2017. Betavoltaic Study of a GaN pin Structure Grown by Metal-Organic Vapour Phase Epitaxy with a Ni-63 Source. Thin Solid Films, 636: 746-750.
  • Belahsene S, Al Saqri N.A, Jameel D, Mesli A, Martinez A, De Sanoit J, Ougazzaden A, Salvestrini J P, Ramdane A, Henini M, 2015. Analysis of Deep Level Defects in GaN P-i-n Diodes after Beta Particle Irradiation. Electronics, 4 (4): 1090–1100.
  • Berleb S, Wolfgang B, 2002. Dispersive Electron Transport in tris(8-Hydroxyquinoline) Aluminum (Alq3) Probed by Impedance Spectroscopy. Physical review letters, 89 (28): 286601.
  • Blom P W M, Vissenberg, M C J M, 1998. Dispersive Hole Transport in Poly (p -Phenylene Vinylene). Physical review letters, 80 (17): 3819–22.
  • Bozkurt K, Özdemir Ö, Ayarcı Kuruoğlu N, Alshehrı B, Dogheche K, Gaimard Q, Ramdane A, Dogheche E, 2019. Impact of Trap States on Inductive Phenomena in 30% InGaN/GaN MQW LED Devices. Journal of Physics D: Applied Physics, 52 (10): 105102.
  • Cao X A, Sandvik P M, LeBoeuf S F, Arthur S D, 2003. Defect Generation in InGaN/GaN Light-Emitting Diodes under Forward, Reverse Electrical Stresses. Microelectronics Reliability, 43 (12): 1987–91.
  • Chichibu S F, Shima K, Kojima K, Ishibashi S, Uedono A, 2020. Origin, Dynamic Properties of Major Intrinsic Nonradiative Recombination Centers in Wide Bandgap Nitride. Semiconductors, 11280 (10): 112800B.
  • Dreyer C E, Alkauskas A, Lyons J L, Speck J S, Van de Walle C G, 2016. Gallium Vacancy Complexes as a Cause of Shockley-Read-Hall Recombination in III-Nitride Light Emitters. Applied Physics Letters, 108: 141101.
  • Gill W D, 1972. Drift Mobilities in Amorphous Charge‐transfer Complexes of Trinitrofluorenone, Poly‐n‐vinylcarbazole. Journal of Applied Physics, 43(12): 5033.
  • Gonzolez G, 2015. Quantum Theory of Space Charge Limited Current in Solids. Journal of Applied Physics, 117 (8): 22–25.
  • Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B, Schlotter P, 1998. Nature of the 2.8 eV Photoluminescence B, in Mg Doped GaN. Applied Physics Letters, 72: 1326-1328.
  • Ke W-C, Jian S R, Chen I C, Jang J S-C, Chen W-K, Juang J-Y, 2012. Influence of Mg-containing precursor flow rate on the structural, electrical and mechanical properties of Mg-doped GaN thin films. Materials Chemistry and Physics, 136 (2-3): 796–801
  • Lampert M A, Mark P, 1970. Current Injection in Solids Current Injection in Solids. Semiconductors and Semimetals, Elsevier, 6: 1-96.
  • Lee I-H, Polyakov A Y, Smirnov N B, Zinovyev R A, Bae K-B, Chung T-H, Hwang S-M, Baek J-H, Pearton S-J,2017. Changes in Electron, Hole Traps in GaN-Based Light Emitting Diodes from near-UV to Green Spectral Ranges. Applied Physics Letters, 110 (19): 192107.
  • Liu L, Edgar J H, 2002. Substrates for Gallium Nitride Epitaxy. Materials Science, Engineering: R: Reports, 37 (3): 61–127.
  • Martens H, Brom H, Blom P, 1999. Frequency-Dependent Electrical Response of Holes in Poly(p-Phenylene Vinylene). Physical Review B, 60 (12): R8489--R8492.
  • Maruska H P, Stevenson D A, 1973. Violet Luminescence of Mg-Doped GaN. Applied Physics Letters, 22: 303.
  • Maruska H P, Tietjen J J, 1969. The Preparation, Properties of Vapor-Deposited Single-Crystal-Line GaN. Applied Physics Letters, 15: 327.
  • Munson C E, Gaimard Q, Merghem K, Sundaram S, Rogers D J, Sanoit J, Voss P L, Ramdane A, Salvestrini J P, Ougazzaden A, 2018. Modeling, Design, Fabrication, Experimentation of a GaN-Based, 63Ni Betavoltaic Battery. Journal of Physics D: Applied Physics, 51: 035101.
  • Murayama M, Nakayama Y, Yamazaki K, Hoshina Y, Watanabe H, Fuutagawa N, Kawanishi H, Uemura T, Narui H, 2018. Watt-Class Green (530 nm) , Blue (465 nm) Laser Diodes. Physica Status Solidi (A) Applications, Materials Science 215 (10): 1700513.
  • Nakamura S, 1998. The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes, Laser Diodes. Science, 281 (5379): 956–61.
  • Nakano Y, Takashi J, 2002. Electrical Characterization of Acceptor Levels in Mg-Doped GaN. Journal of Applied Physics, 92: 5590.
  • Narayanan V, Lorenz K, Kim W, Mahajan S, 2002. Gallium Nitride Epitaxy on (0001) Sapphire. Philosophical Magazine A, 82 (5): 885–912.
  • Ning X J, Chien, F R, Pirouz P, Yang J W, Khan M A, 1996. Growth Defects in GaN Films on Sapphire: The Probable Origin of Threading Dislocations. Journal of Materials Research, 11 (3): 580–92.
  • Novikov S V, Dunlap D H, Kenkre V M, Parris P E, Vannikov A V, 1998. Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials. Physical Review Letters, 81 (20): 4472–75.
  • O’Hanlon T J, Zhu T, Massabuau F C P, Oliver R A. 2021. Dislocations at Coalescence Boundaries in Heteroepitaxial GaN/Sapphire Studied after the Epitaxial Layer Has Completely Coalesced. Ultramicroscopy, 113258.
  • Oh E, Park H, Park Y, 1998. Excitation Density Dependence of Photoluminescence in GaN:Mg. Applied Physics Letters, 72: 70.
  • Pimputkar S, Speck J S, DenBaars S P, Nakamura S, 2009. Prospects for LED Lighting. Nat Photonics, 3 (4): 180–82.
  • Reshchikov M A, Albarakati N M, Monavarian M, Avrutin V, Morkoç H, 2018. Thermal Quenching of the Yellow Luminescence in GaN. Journal of Applied Physics, 123: 161520
  • Reshchikov M A, Morko̧ç H, 2006. Luminescence from Defects in GaN. In Physica B: Condensed Matter, 376-377: 428-431.
  • Reshchikov M A, Morko̧ç H, 2005. Luminescence Properties of Defects in GaN. Journal of Applied Physics, 97: 061301
  • Shan L-W, Liu Z-Y, Lin M-P, Yu C-J, Hsieh K-C, Wu M-C, 2017. Electrical Analyses of GaN PIN Diodes Grown on Patterned Sapphire Substrates. Journal of Vacuum Science and Technology B, 35: 052203.
  • Sheremet V, Gheshlaghi N, Sözen M, Elçi M, Sheremet N, Aydınlı A, Altuntaş I, Ding K, Avrutin V, Özgür Ü, Morkoç H, 2018. InGaN Stress Compensation Layers in InGaN/GaN Blue LEDs with Step Graded Electron Injectors. Superlattices and Microstructures, 116: 253-261.
  • Walker D, Saxler A, Kung P, Zhang X, Hamilton M, Diaz J, Razeghi M, 1998. Visible-Blind GaN PIN Photodiodes. Applied Physics Letters, 72 (25): 366–67.
  • Soh C B, Chua S J, Lim H F, Chi D Z, Tripathy S, Liu W, 2004. Assignment of Deep Levels Causing Yellow Luminescence in GaN. Journal of Applied Physics, 96: 1341.
  • Sui Y P, Guang H Y, 2011. Effect of Mg Doping on the Photoluminescence of GaN:Mg Films by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy. Chinese Physics Letters, 28 (6): 067807.
  • Tan S, 2020. GaN-Based LEDs Using Homo-Epitaxial Technology, the Progress, Challenges of HVPE Method. IOP Conference Series: Materials Science, Engineering, 729: 012004.
  • Usami S, Miyagoshi R, Tanaka A, Nagamatsu K, Kushimoto M, Deki M, Nitta S, Honda Y, Amano H, 2017. Effect of Dislocations on the Growth of P-Type GaN, on the Characteristics of p–n Diodes. Physica Status Solidi (A), 214: 1600837
  • Ves S, Venkateswaran U D, Loa I, Syassen K, 2000. Pressure Dependence of the Blue Luminescence in Mg-Doped GaN. Applied Physics Letters, 77: 2536.
  • Wang W, Liao C, Chang Y, Lee Y, Ho C, Wu M, 2013. DLTS Analyses of GaN P-i-n Diodes Grown on Conventional, Patterned Sapphire Substrates. IEEE Electron Device Letters, 34 (11): 1376-1378.
  • Wang Y, Huynh K, Liao ME, Yu H, Bai T, Tweedie J, Breckenridge M H, Collazo R, Sitar Z, Bockowski M, Liu Y, Goorsky M S, 2020. Strain Recovery, Defect Characterization in Mg-Implanted Homoepitaxial GaN on High-Quality GaN Substrates. Physica Status Solidi (B) Basic Research, 257 (4): 1900705.
  • Yang W, Li D, He J, Wang C, Hu X, 2014. Temperature‐dependent Ac Current‐voltage‐capacitance Characteristics of GaN‐based Light‐emitting Diodes under High Forward Bias. Physica Status Solidi C, 11 (3‐4): 714–17.
  • Yoon Y J, Lee J S, Kang I M, Lee J H, Kim D S, 2020. Design, Analysis of Gallium Nitride-Based p-i-n Diode Structure for Betavoltaic Cell with Enhanced Output Power Density. Micromachines, 11: 1100.
  • Zhang H, Shih C-W, Martin D, Caut A, Carlin J-F, Butté R, Grandjean N, 2019. Short Cavity InGaN-Based Laser Diodes with Cavity Length below 300 um. Semiconductor Science, Technology, 34: 085005.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Neslihan Ayarcı Kuruoğlu 0000-0002-9659-7280

Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 5 Temmuz 2021
Kabul Tarihi 14 Ekim 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ayarcı Kuruoğlu, N. (2022). MOCVD ile büyütülen GaN p-i-n yapısındaki sarı ışık merkezinin elektro-optik ölçümlerle incelenmesi. Journal of the Institute of Science and Technology, 12(1), 207-216. https://doi.org/10.21597/jist.962671
AMA Ayarcı Kuruoğlu N. MOCVD ile büyütülen GaN p-i-n yapısındaki sarı ışık merkezinin elektro-optik ölçümlerle incelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Mart 2022;12(1):207-216. doi:10.21597/jist.962671
Chicago Ayarcı Kuruoğlu, Neslihan. “MOCVD Ile büyütülen GaN P-I-N yapısındaki Sarı ışık Merkezinin Elektro-Optik ölçümlerle Incelenmesi”. Journal of the Institute of Science and Technology 12, sy. 1 (Mart 2022): 207-16. https://doi.org/10.21597/jist.962671.
EndNote Ayarcı Kuruoğlu N (01 Mart 2022) MOCVD ile büyütülen GaN p-i-n yapısındaki sarı ışık merkezinin elektro-optik ölçümlerle incelenmesi. Journal of the Institute of Science and Technology 12 1 207–216.
IEEE N. Ayarcı Kuruoğlu, “MOCVD ile büyütülen GaN p-i-n yapısındaki sarı ışık merkezinin elektro-optik ölçümlerle incelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 1, ss. 207–216, 2022, doi: 10.21597/jist.962671.
ISNAD Ayarcı Kuruoğlu, Neslihan. “MOCVD Ile büyütülen GaN P-I-N yapısındaki Sarı ışık Merkezinin Elektro-Optik ölçümlerle Incelenmesi”. Journal of the Institute of Science and Technology 12/1 (Mart 2022), 207-216. https://doi.org/10.21597/jist.962671.
JAMA Ayarcı Kuruoğlu N. MOCVD ile büyütülen GaN p-i-n yapısındaki sarı ışık merkezinin elektro-optik ölçümlerle incelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:207–216.
MLA Ayarcı Kuruoğlu, Neslihan. “MOCVD Ile büyütülen GaN P-I-N yapısındaki Sarı ışık Merkezinin Elektro-Optik ölçümlerle Incelenmesi”. Journal of the Institute of Science and Technology, c. 12, sy. 1, 2022, ss. 207-16, doi:10.21597/jist.962671.
Vancouver Ayarcı Kuruoğlu N. MOCVD ile büyütülen GaN p-i-n yapısındaki sarı ışık merkezinin elektro-optik ölçümlerle incelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(1):207-16.