Bu çalışmada 3-boyutlu Öklid uzayında parametrik denklemi ile verilen yüzey üzerinde eğriliği sıfırdan farklı olan bir eğrinin Bertrand B-çiftinin bu yüzey üzerinde isogeodezik olması için gerekli ve yeterli şartlar elde edilerek, ortak Bertrand-B isogeodezik eğrili yüzey aileleri problemi ele alınmıştır.
Bu çalışmada 3-boyutlu Öklid uzayında parametrik denklemi ile verilen yüzey üzerinde eğriliği sıfırdan farklı olan bir eğrinin Bertrand B-çiftinin bu yüzey üzerinde isogeodezik olması için gerekli ve yeterli şartlar elde edilerek, ortak Bertrand-B isogeodezik eğrili yüzey aileleri problemi ele alınmıştır.
Atalay GŞ, Kasap E, 2016. Surfaces family with common Smarandache geodesic curve according to Bishop frame in Euclidean space, Mathematical Science and Applications E-Notes., 4 , 1.
Atalay GŞ, E. Kasap, 2017. Surfaces family with common Smarandache geodesic curve, Journal of Science and Arts (JOSA), 4, 41.
Atalay GŞ, 2018. Surfaces family with a common Mannheim geodesic curve. Journal of Applied Mathematics and Computation, 2(4),155-165.
Atalay GŞ, 2018. Surfaces family with a common Mannheim asymptotic curve. Journal of Applied Mathematics and Computation, 2(4),145-154.
Ayvacı KH, 2019. Ortak Mannheim-B İsogeodezikli ve İsoasimptotikli Yüzey Ailesi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
Bayram E, Kasap E, 2014. Hypersurface family with a common isogeodesic, Studies and Research Series Mathematics and Informatics, 24, 2, 12.
Bertrand J, 1850. Mémoire sur la théorie des courbes à double courbure, Comptes Rendus 36, Journal de Mathématiques Pures et Appliquées 15, 332–350.
Bishop RL, 1975. There is more than one way to Frame a curve. The American Mathematical Monthly, 82(3), 246.
Ergün E, Bayram E, 2016. Surface family with a common natural geodesic lift, Int. J. Math. Combin., 1, 2.
Kasap E, Akyildiz FT, Orbay K, 2008. A generalization of surfaces family with common spatial geodesic, Applied Mathematics and Computation, 201, 781-789.
Millman RS, George DP, 1977. Elements of Differential Geometry, Prentice-Hall.
Wang GJ, Tang K, Tai CL, 2004. Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Des. 36 (5), 447-459.
Yerlikaya F, Karaahmetoğlu S, Aydemir İ, 2016. On the Bertrand B-Pair Curve in 3-Dimensional Euclidean Space, Journal of Science and Arts, 3(36), 215-224.
Yılmaz S, Turgut M, 2010. A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371(2), 764-776.
Surface Family With A Common Bertrand-B Isogeodesic Curve
Yıl 2020,
Cilt: 10 Sayı: 3, 1975 - 1983, 01.09.2020
In this paper, we construct a surface family possessing a Bertrand B pair of a given curve as an geodesic curve. Using the Bishop-2 frame frame of the given Bertrand B curves, we present the surface as a linear combination of this frame and analyse the necessary and sufficient condition for a given curve such that its Bertrand B pairs is both parametric and geodesic on a parametric surface. Finally, we present some interesting examples to show the validity of this study.
In this paper, we construct a surface family possessing a Bertrand B pair of a given curve as an geodesic curve. Using the Bishop-2 frame frame of the given Bertrand B curves, we present the surface as a linear combination of this frame and analyse the necessary and sufficient condition for a given curve such that its Bertrand B pairs is both parametric and geodesic on a parametric surface. Finally, we present some interesting examples to show the validity of this study.
Atalay GŞ, Kasap E, 2016. Surfaces family with common Smarandache geodesic curve according to Bishop frame in Euclidean space, Mathematical Science and Applications E-Notes., 4 , 1.
Atalay GŞ, E. Kasap, 2017. Surfaces family with common Smarandache geodesic curve, Journal of Science and Arts (JOSA), 4, 41.
Atalay GŞ, 2018. Surfaces family with a common Mannheim geodesic curve. Journal of Applied Mathematics and Computation, 2(4),155-165.
Atalay GŞ, 2018. Surfaces family with a common Mannheim asymptotic curve. Journal of Applied Mathematics and Computation, 2(4),145-154.
Ayvacı KH, 2019. Ortak Mannheim-B İsogeodezikli ve İsoasimptotikli Yüzey Ailesi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
Bayram E, Kasap E, 2014. Hypersurface family with a common isogeodesic, Studies and Research Series Mathematics and Informatics, 24, 2, 12.
Bertrand J, 1850. Mémoire sur la théorie des courbes à double courbure, Comptes Rendus 36, Journal de Mathématiques Pures et Appliquées 15, 332–350.
Bishop RL, 1975. There is more than one way to Frame a curve. The American Mathematical Monthly, 82(3), 246.
Ergün E, Bayram E, 2016. Surface family with a common natural geodesic lift, Int. J. Math. Combin., 1, 2.
Kasap E, Akyildiz FT, Orbay K, 2008. A generalization of surfaces family with common spatial geodesic, Applied Mathematics and Computation, 201, 781-789.
Millman RS, George DP, 1977. Elements of Differential Geometry, Prentice-Hall.
Wang GJ, Tang K, Tai CL, 2004. Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Des. 36 (5), 447-459.
Yerlikaya F, Karaahmetoğlu S, Aydemir İ, 2016. On the Bertrand B-Pair Curve in 3-Dimensional Euclidean Space, Journal of Science and Arts, 3(36), 215-224.
Yılmaz S, Turgut M, 2010. A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371(2), 764-776.
Ayvacı, K. H., & Şaffak Atalay, G. (2020). Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Journal of the Institute of Science and Technology, 10(3), 1975-1983. https://doi.org/10.21597/jist.696719
AMA
Ayvacı KH, Şaffak Atalay G. Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2020;10(3):1975-1983. doi:10.21597/jist.696719
Chicago
Ayvacı, K. Hilal, ve Gülnur Şaffak Atalay. “Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri”. Journal of the Institute of Science and Technology 10, sy. 3 (Eylül 2020): 1975-83. https://doi.org/10.21597/jist.696719.
EndNote
Ayvacı KH, Şaffak Atalay G (01 Eylül 2020) Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Journal of the Institute of Science and Technology 10 3 1975–1983.
IEEE
K. H. Ayvacı ve G. Şaffak Atalay, “Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 3, ss. 1975–1983, 2020, doi: 10.21597/jist.696719.
ISNAD
Ayvacı, K. Hilal - Şaffak Atalay, Gülnur. “Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri”. Journal of the Institute of Science and Technology 10/3 (Eylül 2020), 1975-1983. https://doi.org/10.21597/jist.696719.
JAMA
Ayvacı KH, Şaffak Atalay G. Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:1975–1983.
MLA
Ayvacı, K. Hilal ve Gülnur Şaffak Atalay. “Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri”. Journal of the Institute of Science and Technology, c. 10, sy. 3, 2020, ss. 1975-83, doi:10.21597/jist.696719.
Vancouver
Ayvacı KH, Şaffak Atalay G. Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(3):1975-83.