Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuz ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi

Yıl 2021, Cilt: 11 Sayı: 4, 2559 - 2572, 15.12.2021
https://doi.org/10.21597/jist.915426

Öz

Tuz ve kuraklık stresi gibi iki önemli abiyotik stres, bitkilerin gelişimini etkileyerek morfolojik, fizyolojik ve moleküler seviyede pek çok aksaklıklara neden olmaktadır. Silikonun biyotik ve abiyotik strese karşı etkili olduğu bilinmektedir. Bu çalışmada, tuz ve kuraklık stresi koşullarında yetiştirilen bir ekmeklik buğday (Triticum aestivum L.) çeşidi olan Ceyhan-99’a 100 ppm ve 200 ppm silikon sulama suyuna katılarak bitkiler üzerindeki morfolojik karakterlere ve fotosentetik pigmentler üzerine etkisi araştırılmış ve optimal silikon konsantrasyonu belirlenmeye çalışılmıştır. Ceyhan-99 tuza toleransı düşük ve kuraklığa toleransı da orta seviyede bir ekmeklik buğday çeşididir. Silikon bitkilere toplamda 2 defa uygulanmıştır. Tuz stresi için bitkiler birinci hafta 100 mM, ikinci hafta 200 mM tuz sulama suyuna katılarak strese maruz bırakılmışlardır. Kuraklık stresi için bitkiler birer hafta arayla sulanarak kuraklığa maruz bırakıldı. Araştırmada bitki boyu, bitki ağırlığı, kök boyu, kök ağırlığı, bağıl su miktarı, klorofil a, klorofil b, karotenoid ve toplam klorofil miktarı tespit edilmiştir. Stres uygulanan gruplarda incelenen parametrelerin olumsuz yönde etkilendiği görülmüş fakat silikon uygulamaları ile büyüme parametreleri ve bağıl su miktarından kontrole yakın değerler elde edilmiştir. Kontrol gruplarına 100 ppm silikon uygulamasında kök ağırlığında değişim görülmezken, bitki boyu, bitki ağırlığı, kök ağırlığı gibi diğer parametrelerde istatistiksel olarak artış tespit edilmiştir. Fotosentetik pigmentler incelendiğinde stres altında klorofil a, klorofil b ve toplam klorofil miktarlarında kontrole göre azalış görülürken, karotenoid miktarında artış görülmüştür. Kontrol gruplarına silikon uygulamasında ise klorofil a, klorofil b ve toplam klorofil miktarında artış gözlenirken, karotenoid miktarında azalış saptanmıştır. Araştırma sonucunda çalışılan parametrelerde silikon uygulamalarının, kuraklık ve tuz stresinin zararlı etkilerinin azaltılmasına yardımcı olduğu, kurak ve tuzluluğun neden olduğu yarı kurak bölgelerde su kıtlığının şiddetini azaltarak buğday bitkisinin gelişmesini arttırabileceği görülmektedir.

Kaynakça

  • Ahmad R, Zaheer SH, Ismail S, 1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Science, 85: 43-50.
  • Ahmed HGM, Zeng Y, Yang X, Anwaar HA, Mansha MZ, Hanif CMS, İkram K, Ullah A, Alghanem SMS, 2020. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi Journal of Biological Sciences, 27: 2116-2123.
  • Ahmed M, Qadeer U, Ahmed ZI, Hassan F, 2015. Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Archives of Agronomy and Soil Science, DOI: 10.1080/03650340.2015.1048235.
  • Ahmed K, Shabbir G, Ahmed M, Shah KN, 2020. Phenotyping for drought resistance in bread wheat using physiologicaland biochemical traits. Science of the Total Environment, 729, 139082.
  • Ali A, Haq T, Mahmood R, Jaan M, Abbas, MN, 2019. Stimulating the Anti-Oxidative Role and Wheat Growth Improvement Through Silicon Under Salt Stress. Silicon, 11: 2403-2406.
  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W, 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9): 2026-2032.
  • Arslan Ö, 2018. Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4): 47-54.
  • Azeem M, Igbal N, Kausar S, Javed MT, Akram S, Sajid MA, 2015. Efficacy of silicon priming and fertigation to modulate seedling’s vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment. Environmental Science and Pollution Research, 22, 14367-14371.
  • Babita M, Maheswari M, RaoL M, Shanker AK, Rao DG, 2010. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environmental and Experimental Botany, 69: 243–249.
  • Balakhnina TI, Nosalewicz M, 2012. Effect of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regulation, 67 (1); 35-43.
  • Bat M, Tunçtürk R, Tunçtürk M, 2020. Ekinezya (Echinacea purpurea L.) Bitkisinde Kuraklık Stresi ve Deniz Yosunu Uygulamalarının Bazı Fizyolojik Parametreler Üzerine Etkisi. KSÜ Tarım ve Doğa Dergisi, 23 (1); 99-107.
  • Batlang U, Baisakh N, Ambavaram MM, Pereira A, 2013. Phenotypic and physiological evaluation for drought and salinity stress responses in rice. Methods in Molecular Biology, 956; 209–225.
  • Battisti DS, Naylor RL, 2009. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science, 323; 240-244.
  • Bhargava S, Sawant K, 2013. Drought Stress Adaptation: Metabolic Adjustment and Regulation of Gene Expression. Plant Breed, 132: 21-32.
  • Bukhari MA, Ahmad Z, Ashraf MY, Afzal M, Nawaz F, Nafees M, Jatoi WN, Malghani NA, Shah AN, Manan A, 2020. Silicon Mitigates Drought Stress in Wheat (Triticum aestivum L.) Through Improving Photosynthetic Pigments, Biochemical and Yield Characters, Silicon, DOI 10.1007/s12633-020-00797-4.
  • Chaves MM, Flexas J, Pinheiro C, 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103; 551–560.
  • Das B, Pargal S, Sahoo RN, Krishna G, 2017.Comparison of different uni- and multi-variate techniques for monitoring leaf water status as an indicator of water-deficit stress in wheat through spectroscopy. Biosystem Engineering, 160; 69-83.
  • Doğan Z, Arslan S, Berkman AN, 2015. Türkiye’de Tarım Sektörünün İktisadi Gelişimi ve Sorunları: Tarihsel Bir Bakış. Niğden Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8(1); 29-41.
  • Dolferus R, 2014. To Grow or Not to Grow: A Stressful Decision for Plants. Plant Science, 2229: 247-261.
  • Erkan İE, 2019. Effect of Silicon Application on Wheat Under Boron Stress. Süleyman Demirel University Journal of Natural and Applied Sciences, 23(3); 743-747.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA, 2009. Plant Dorught Stress: Effects, Mechanisms and Management. Agronomy for Sustainable Development, 29; 185-212.
  • Flexas J, Medrano H, 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botan,. 83; 183-189.
  • Fu J, Huang B, 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 45; 105-114.
  • Ghonaim MM, Mohamed HI, Omran AAA, 2020. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genetic Resources and Crop Evolution, 10; 1007-1072.
  • Ghoulam CK Fares K, 2001. Effect of salinity on seed germination and early seedling growth of sugar beat (Beta vulgaris L.). Seed Science and Technology, 29; 357- 364.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48; 909-930.
  • Gong H, Zhu X, Chen K, Wang S, Zhang C, 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169; 313–321.
  • Horuz A, 2018. Silisyumun bitki gelişimine olan etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 6(2); 151 – 163.
  • Horuz A, Korkmaz A, Karaman MR, 2013. Çeltik Topraklarının Silisyumlu Gübrelemeye Tepkisi. Tarım Bilimleri Dergisi, 19(4): 268-280.
  • İnan B, Emir O, Doğan R, Çarpıcı EB, 2018. Bazı Ekmeklik Buğday (Triticum aestivum L.) Hatlarının Çimlenme Döneminde Tuz Stresine Tepkileri. Journal of Agricultural Faculty of Uludag University, 32(1): 69-78.
  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ, 2016. Chlorophyll a fluorescence as a toolto monitor physiological status of plants under abiotic stress conditions. Actaphysiologiae plantarum; 38 (4): 102.
  • Kalefetoğlu T, Ekmekçi Y, 2005. The effect of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18 (4): 723- 740.
  • Kara B, Akgün İ, Altındal D, 2011. Tritikale genotiplerinde çimlenme ve fide gelişimi üzerine tuzluluğun (NaCl) etkisi. Selçuk Üniversitesi. Selçuk Tarım ve Gıda Bilimleri Dergisi, 25(1):1-9.
  • Kaya A, İnan M, 2017. Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3): 332-342.
  • Kaya A, İnan M, 2018. Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L.) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri Armağan. KSÜ Tarım ve Doğa Dergisi, 21(4): 559-564.
  • Kaya C, Tuna L, Higgs D, 2006. Effect of Silicon on Plant Growth and Mineral Nutrition of Maize Grown Under WaterStress Condition. Journal of Plant Nutrition, 29: 1469-1480.
  • Khadka K, Earl HJ, Raizada MN, Navabi A, 2020. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. Frontiers in Plant Science, 11:715.
  • Khayatnezhad M, Zaeifizadeh M, Gholamin R, 2011. Effect of endseason drought stress on chlorophyll fluorescence and content of antioxidant enzyme superoxide dismutase enzyme (SOD) in susceptible and tolerant genotypes of durum wheat. African Journal of Agricultural Research, 6: 6397–6406.
  • Kızılgeçi F, Tazebay N, Namlı M, Albayrak Ö, Yıldırım M, 2017. The drought effect on seed germination and seedling growth in bread wheat (Triticum aestivum L.). International Journal of Agriculture Environment and Food Science, 1: 33–37.
  • Korkmaz H, Durmaz A, 2017. Bitkilerin abiyotik stres faktörlerine verdiği cevaplar. GÜFBED, 7 (2): 192-207.
  • Köşkeroğlu S, 2006. Tuz ve su stresi altındaki mısır (Zea mays L.) bitkisinde prolin birikim düzeyleri ve stres parametrelerinin araştırılması. Muğla Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi (Basılmış).
  • Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A, 2013. Cyclophilins: proteins in search of function. Plant Signaling and Behavior, 8(1): e22734.
  • Liu X, Li L, Li M, Su L, Lian S, Zhang B, 2018. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports, 8:2250.
  • Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T, 2016. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation, 35: 1–10.
  • Maghsoudi K, Emam Y, Ashraf M, 2015. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish Journal of Botany, 39: 625-634.
  • Mali M, Aery NC, 2008. Influence of Silicon on Growth, Relative WaterContents and Uptake of Silicon, Calcium and Potassium in Wheat Grown in Nutrient Solution. Journal of Plant Nutrition, 31: 1867–1876.
  • Marcinska I, Czyczylo-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA, 2013. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35: 451-461.
  • Mohammadi PP, Moieni A, Komatsu S, 2012. Comparative proteome analysis of droughtsensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids, 43: 2137–2152.
  • Mostafa GG, 2011. Effect of sodium azide on the growth and variability induction in Helianthus annuus L. International Journal of Plant Breeding and Genetic, 5: 76-85.
  • Moussa HR, 2006. Influence of exogenous application of Si on physiological response of salt-stressed maize (Zea mays L.). International Journal of Agriculture and Biology, 2: 293-297.
  • Nikolaeva MK, Maevskaya SN, Shugaev AG, Bukhov NG, 2008. Effect of drought on chylorophyll content and antioxidant enzym activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57:94–102.
  • Öncel I, Keleş Y, 2002. Tuz stresi altındaki buğday genotiplerinin büyüme, pigment içeriği ve çözünür madde kompozisyonunda değişmeler. Çukurova Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 23(2).
  • Özdemir E, Sade B, Soylu S, Atalay E, 2012. Ekmeklik buğday (Triticum aestivum L.) priming uygulamalarının kurak ve normal ortam koşullarında büyüme parametreleri ile bağıl su içeriği değerlerinin üzerine etkileri. Selçuk Tarım ve Gıda Bilimleri Dergisi, 26(2): 25-30.
  • Özpay T, 2008. Taze fasulye (Phaseolus vulgaris L.) genotiplerinin kuraklık stresine olan tepkilerinin belirlenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi (Basılmış).
  • Parry MJ, Androlojc JP,Khan S, Lea PJ, Keys AJ, 2002. Rubisco activity: effects of drought-stress. Annals of Botany, 89: 833-839.
  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ, 2010. Silicon Improves the Tolerance to Water-Deficit Stress Induced by Polyethylene Glycol in Wheat (Triticum aestivum L.) Seedlings. Journal of Plant Growth Regulation, 29: 106–115.
  • Pessarakli M, Tucker TC, Nakabayashi K, 1991. Growth response of barley and wheat to salt stres. Journal of Plant Nutrition, 14(4); 331-340.
  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M, 2009. Physiological functions of beneficial elements.Current Opinion in Plant Biology, 12: 267-274.
  • Pradhan A, Naik N, Sahoo KK, 2015. RNAi Mediated Drought and Salinity Stress Tolerance in Plants. American Journal of Plant Sciences, 6: 1990-2008.
  • Qadir SA, Khursheed M, Huyop F, 2016. Effect of drought stress on morphology, growth and yield of six bread wheat (Triticum aestivum L.) cultivars. Zanco Journal of Pure and Applied Sciences, 28: 37–48.
  • Rana V, Ram S, Sendhil R, Nehra KM, Sharma I, 2015. Physiological, biochemical and morphological study in wheat (Triticum aestivum L.) RILs population for salinity tolerance. Journal of Agricultural Science, 7: 119-128.
  • Rengasamy R, 2010. Soil processes affecting crop production in saltaffected soils. Functional Plant Biology, 37: 613–620.
  • Salim M, 1991. Comparative growth responses and ionic relations of four cereals during salt stress. Journal of Agronomy & Crop Science, 166: 204-209.
  • Saqid M, Zörb C, Schubert S, 2008. Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology, 35: 633–639.
  • Sarto MVM, Sarto JRW, Rampim L. BassegioD, da Costa PF, Inagaki AM, 2017. Wheat phenology and yield under drought: a review. Australian Journal of Crop Science, 11: 941–946.
  • Shabala S, 2013. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112:1209–1221.
  • Shannon MC, 1984. Breeding selection and the genetics of salt tolerance. Salinity Tolerance in Plant Strategies for Crop Improvement. A Viley- Interscience Publisher, 231-254.
  • Shannon MC, 1985. Principles and strategies in breeding for higher salt tolerance. Plant and Soil, 89: 227-241.
  • Singh AK, Ansari MW, Pareek A, Singla-Paree, SL, 2008. Raising Salinity Tolerant Rice: Recent Progress and Future Perspectives. Physiology and Molecular Biology of Plants, 14: 137-154.
  • Şen A, Sarsu F, 2018. Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters.Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(3): 315-320.
  • Şenay A, Kaya MD, Atak M, Çiftçi CY, 2005. Farklı tuz konsantrasyonlarının bazı ekmeklik buğday çeşitlerinin çimlenme ve fide gelişimi üzerine etkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi. 5 sayfa.
  • Takeda S, Matsuoka M, 2008. Genetic Approaches to Crop Improvement: Responding to Environmental and Population Changes. Nature Reviews Genetics, 9: 444-457.
  • Tomar RS, TiwariS, Naik BK, Chand S, Deshmukh R, Mallik N, 2016. Molecular and morpho-agronomical characterization of root architecture at seedling and reproductive stages for drought tolerance in wheat. Plos One, 11:e0156528.
  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR, 2008. Silicon improves salinity tolerance in wheat plants.Environmental and Experimental Botany, 62: 10–16.
  • Van Hoorn JW, 1991. Development of soil salinity during germination and early seedling growth and its effect on several crops. Agricultural Water Management, 20:17-28.
  • Veli S, Kırtok Y, Düzenli S, Tükel S, Kılınç M, 1994. Evaluation of salinity stress on germination characteristics and seedling growth of 3 bread wheats (Triticum aestivum L.). Tarla Bitkileri Kongresi, 25-29 Nisan 1994-İzmir, Cilt I, 57-61.
  • Yavaş İ, Akgül HN, Ünay A, 2019. Bitkilerin Kuraklığa Dayanıklılığını Artırmaya Yönelik Uygulamalar. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 4(1): 48-57.
  • Yıldız M, Kaya F, Terzi H, 2020. Kuraklık Stresi ve Bitki Proteomiği. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1): 286-297.
  • Zhang WJ, Zhang XJ, Lang DY, Li M, Liu H, Zhang XH, 2020. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photosynthesis and water status. Biologia Plantarum, 64: 302-313.
  • Zhu Y, Gong H, 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34: 455-472.

The Effect of Silicon Applications on Some Stress Parameters of Wheat Plant (Triticum aestivum L.) Grown Under Salt and Drought Stres

Yıl 2021, Cilt: 11 Sayı: 4, 2559 - 2572, 15.12.2021
https://doi.org/10.21597/jist.915426

Öz

Two important abiotic stresses, such as salt and drought stress, affect the growth of plants and cause many malfunctions at the morphological, physiological and molecular level. Silicone is known to be effective against biotic and abiotic stress. In this study, a bread wheat (Triticum aestivum L.) Ceyhan-99 variety grown under salt and drought stress conditions, 100 ppm and 200 ppm silicon was added to irrigation water, and its effect was investigated on morphological characters and photosynthetic pigments on plants and the optimal silicon concentration was tried to be determined. Ceyhan-99 is a bread wheat variety with low salt tolerance and moderate drought tolerance. Silicon was applied to the plants 2 times in total. For salt stress, plants were exposed to stress by adding 100 mM salt in the first week and 200 mM salt in the second week. For drought stress, plants were exposed to drought by watering at one week intervals. In the study, plant height, plant weight, root height, root weight, relative water content, chlorophyll a, chlorophyll b, carotenoid and total chlorophyll amount were determined. While no change was observed in root weight in 100 ppm silicon application to the control groups, a statistical increase was found in other parameters such as plant height, plant weight, and root weight. When photosynthetic pigments were examined, the amount of chlorophyll a, chlorophyll b and total chlorophyll decreased under stress condition compared to the control but the amount of carotenoid increased. As a result of the research, silicon applications in the studied parameters helped to reduce the harmful effects of drought and salt stress, it is seen that it can increase the development of wheat plant by reducing the severity of water scarcity in semi-arid regions caused by drought and salinity.

Kaynakça

  • Ahmad R, Zaheer SH, Ismail S, 1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Science, 85: 43-50.
  • Ahmed HGM, Zeng Y, Yang X, Anwaar HA, Mansha MZ, Hanif CMS, İkram K, Ullah A, Alghanem SMS, 2020. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi Journal of Biological Sciences, 27: 2116-2123.
  • Ahmed M, Qadeer U, Ahmed ZI, Hassan F, 2015. Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Archives of Agronomy and Soil Science, DOI: 10.1080/03650340.2015.1048235.
  • Ahmed K, Shabbir G, Ahmed M, Shah KN, 2020. Phenotyping for drought resistance in bread wheat using physiologicaland biochemical traits. Science of the Total Environment, 729, 139082.
  • Ali A, Haq T, Mahmood R, Jaan M, Abbas, MN, 2019. Stimulating the Anti-Oxidative Role and Wheat Growth Improvement Through Silicon Under Salt Stress. Silicon, 11: 2403-2406.
  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W, 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9): 2026-2032.
  • Arslan Ö, 2018. Su Kıtlığına Maruz Bırakılmış C3 ve C4 Bitkilerinin Fotosentetik Aktivitelerinin Belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4): 47-54.
  • Azeem M, Igbal N, Kausar S, Javed MT, Akram S, Sajid MA, 2015. Efficacy of silicon priming and fertigation to modulate seedling’s vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment. Environmental Science and Pollution Research, 22, 14367-14371.
  • Babita M, Maheswari M, RaoL M, Shanker AK, Rao DG, 2010. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environmental and Experimental Botany, 69: 243–249.
  • Balakhnina TI, Nosalewicz M, 2012. Effect of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regulation, 67 (1); 35-43.
  • Bat M, Tunçtürk R, Tunçtürk M, 2020. Ekinezya (Echinacea purpurea L.) Bitkisinde Kuraklık Stresi ve Deniz Yosunu Uygulamalarının Bazı Fizyolojik Parametreler Üzerine Etkisi. KSÜ Tarım ve Doğa Dergisi, 23 (1); 99-107.
  • Batlang U, Baisakh N, Ambavaram MM, Pereira A, 2013. Phenotypic and physiological evaluation for drought and salinity stress responses in rice. Methods in Molecular Biology, 956; 209–225.
  • Battisti DS, Naylor RL, 2009. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science, 323; 240-244.
  • Bhargava S, Sawant K, 2013. Drought Stress Adaptation: Metabolic Adjustment and Regulation of Gene Expression. Plant Breed, 132: 21-32.
  • Bukhari MA, Ahmad Z, Ashraf MY, Afzal M, Nawaz F, Nafees M, Jatoi WN, Malghani NA, Shah AN, Manan A, 2020. Silicon Mitigates Drought Stress in Wheat (Triticum aestivum L.) Through Improving Photosynthetic Pigments, Biochemical and Yield Characters, Silicon, DOI 10.1007/s12633-020-00797-4.
  • Chaves MM, Flexas J, Pinheiro C, 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103; 551–560.
  • Das B, Pargal S, Sahoo RN, Krishna G, 2017.Comparison of different uni- and multi-variate techniques for monitoring leaf water status as an indicator of water-deficit stress in wheat through spectroscopy. Biosystem Engineering, 160; 69-83.
  • Doğan Z, Arslan S, Berkman AN, 2015. Türkiye’de Tarım Sektörünün İktisadi Gelişimi ve Sorunları: Tarihsel Bir Bakış. Niğden Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8(1); 29-41.
  • Dolferus R, 2014. To Grow or Not to Grow: A Stressful Decision for Plants. Plant Science, 2229: 247-261.
  • Erkan İE, 2019. Effect of Silicon Application on Wheat Under Boron Stress. Süleyman Demirel University Journal of Natural and Applied Sciences, 23(3); 743-747.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA, 2009. Plant Dorught Stress: Effects, Mechanisms and Management. Agronomy for Sustainable Development, 29; 185-212.
  • Flexas J, Medrano H, 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botan,. 83; 183-189.
  • Fu J, Huang B, 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 45; 105-114.
  • Ghonaim MM, Mohamed HI, Omran AAA, 2020. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genetic Resources and Crop Evolution, 10; 1007-1072.
  • Ghoulam CK Fares K, 2001. Effect of salinity on seed germination and early seedling growth of sugar beat (Beta vulgaris L.). Seed Science and Technology, 29; 357- 364.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48; 909-930.
  • Gong H, Zhu X, Chen K, Wang S, Zhang C, 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169; 313–321.
  • Horuz A, 2018. Silisyumun bitki gelişimine olan etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 6(2); 151 – 163.
  • Horuz A, Korkmaz A, Karaman MR, 2013. Çeltik Topraklarının Silisyumlu Gübrelemeye Tepkisi. Tarım Bilimleri Dergisi, 19(4): 268-280.
  • İnan B, Emir O, Doğan R, Çarpıcı EB, 2018. Bazı Ekmeklik Buğday (Triticum aestivum L.) Hatlarının Çimlenme Döneminde Tuz Stresine Tepkileri. Journal of Agricultural Faculty of Uludag University, 32(1): 69-78.
  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ, 2016. Chlorophyll a fluorescence as a toolto monitor physiological status of plants under abiotic stress conditions. Actaphysiologiae plantarum; 38 (4): 102.
  • Kalefetoğlu T, Ekmekçi Y, 2005. The effect of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18 (4): 723- 740.
  • Kara B, Akgün İ, Altındal D, 2011. Tritikale genotiplerinde çimlenme ve fide gelişimi üzerine tuzluluğun (NaCl) etkisi. Selçuk Üniversitesi. Selçuk Tarım ve Gıda Bilimleri Dergisi, 25(1):1-9.
  • Kaya A, İnan M, 2017. Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3): 332-342.
  • Kaya A, İnan M, 2018. Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L.) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri Armağan. KSÜ Tarım ve Doğa Dergisi, 21(4): 559-564.
  • Kaya C, Tuna L, Higgs D, 2006. Effect of Silicon on Plant Growth and Mineral Nutrition of Maize Grown Under WaterStress Condition. Journal of Plant Nutrition, 29: 1469-1480.
  • Khadka K, Earl HJ, Raizada MN, Navabi A, 2020. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. Frontiers in Plant Science, 11:715.
  • Khayatnezhad M, Zaeifizadeh M, Gholamin R, 2011. Effect of endseason drought stress on chlorophyll fluorescence and content of antioxidant enzyme superoxide dismutase enzyme (SOD) in susceptible and tolerant genotypes of durum wheat. African Journal of Agricultural Research, 6: 6397–6406.
  • Kızılgeçi F, Tazebay N, Namlı M, Albayrak Ö, Yıldırım M, 2017. The drought effect on seed germination and seedling growth in bread wheat (Triticum aestivum L.). International Journal of Agriculture Environment and Food Science, 1: 33–37.
  • Korkmaz H, Durmaz A, 2017. Bitkilerin abiyotik stres faktörlerine verdiği cevaplar. GÜFBED, 7 (2): 192-207.
  • Köşkeroğlu S, 2006. Tuz ve su stresi altındaki mısır (Zea mays L.) bitkisinde prolin birikim düzeyleri ve stres parametrelerinin araştırılması. Muğla Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi (Basılmış).
  • Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A, 2013. Cyclophilins: proteins in search of function. Plant Signaling and Behavior, 8(1): e22734.
  • Liu X, Li L, Li M, Su L, Lian S, Zhang B, 2018. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports, 8:2250.
  • Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T, 2016. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation, 35: 1–10.
  • Maghsoudi K, Emam Y, Ashraf M, 2015. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish Journal of Botany, 39: 625-634.
  • Mali M, Aery NC, 2008. Influence of Silicon on Growth, Relative WaterContents and Uptake of Silicon, Calcium and Potassium in Wheat Grown in Nutrient Solution. Journal of Plant Nutrition, 31: 1867–1876.
  • Marcinska I, Czyczylo-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA, 2013. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35: 451-461.
  • Mohammadi PP, Moieni A, Komatsu S, 2012. Comparative proteome analysis of droughtsensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids, 43: 2137–2152.
  • Mostafa GG, 2011. Effect of sodium azide on the growth and variability induction in Helianthus annuus L. International Journal of Plant Breeding and Genetic, 5: 76-85.
  • Moussa HR, 2006. Influence of exogenous application of Si on physiological response of salt-stressed maize (Zea mays L.). International Journal of Agriculture and Biology, 2: 293-297.
  • Nikolaeva MK, Maevskaya SN, Shugaev AG, Bukhov NG, 2008. Effect of drought on chylorophyll content and antioxidant enzym activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57:94–102.
  • Öncel I, Keleş Y, 2002. Tuz stresi altındaki buğday genotiplerinin büyüme, pigment içeriği ve çözünür madde kompozisyonunda değişmeler. Çukurova Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 23(2).
  • Özdemir E, Sade B, Soylu S, Atalay E, 2012. Ekmeklik buğday (Triticum aestivum L.) priming uygulamalarının kurak ve normal ortam koşullarında büyüme parametreleri ile bağıl su içeriği değerlerinin üzerine etkileri. Selçuk Tarım ve Gıda Bilimleri Dergisi, 26(2): 25-30.
  • Özpay T, 2008. Taze fasulye (Phaseolus vulgaris L.) genotiplerinin kuraklık stresine olan tepkilerinin belirlenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi (Basılmış).
  • Parry MJ, Androlojc JP,Khan S, Lea PJ, Keys AJ, 2002. Rubisco activity: effects of drought-stress. Annals of Botany, 89: 833-839.
  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ, 2010. Silicon Improves the Tolerance to Water-Deficit Stress Induced by Polyethylene Glycol in Wheat (Triticum aestivum L.) Seedlings. Journal of Plant Growth Regulation, 29: 106–115.
  • Pessarakli M, Tucker TC, Nakabayashi K, 1991. Growth response of barley and wheat to salt stres. Journal of Plant Nutrition, 14(4); 331-340.
  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M, 2009. Physiological functions of beneficial elements.Current Opinion in Plant Biology, 12: 267-274.
  • Pradhan A, Naik N, Sahoo KK, 2015. RNAi Mediated Drought and Salinity Stress Tolerance in Plants. American Journal of Plant Sciences, 6: 1990-2008.
  • Qadir SA, Khursheed M, Huyop F, 2016. Effect of drought stress on morphology, growth and yield of six bread wheat (Triticum aestivum L.) cultivars. Zanco Journal of Pure and Applied Sciences, 28: 37–48.
  • Rana V, Ram S, Sendhil R, Nehra KM, Sharma I, 2015. Physiological, biochemical and morphological study in wheat (Triticum aestivum L.) RILs population for salinity tolerance. Journal of Agricultural Science, 7: 119-128.
  • Rengasamy R, 2010. Soil processes affecting crop production in saltaffected soils. Functional Plant Biology, 37: 613–620.
  • Salim M, 1991. Comparative growth responses and ionic relations of four cereals during salt stress. Journal of Agronomy & Crop Science, 166: 204-209.
  • Saqid M, Zörb C, Schubert S, 2008. Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology, 35: 633–639.
  • Sarto MVM, Sarto JRW, Rampim L. BassegioD, da Costa PF, Inagaki AM, 2017. Wheat phenology and yield under drought: a review. Australian Journal of Crop Science, 11: 941–946.
  • Shabala S, 2013. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112:1209–1221.
  • Shannon MC, 1984. Breeding selection and the genetics of salt tolerance. Salinity Tolerance in Plant Strategies for Crop Improvement. A Viley- Interscience Publisher, 231-254.
  • Shannon MC, 1985. Principles and strategies in breeding for higher salt tolerance. Plant and Soil, 89: 227-241.
  • Singh AK, Ansari MW, Pareek A, Singla-Paree, SL, 2008. Raising Salinity Tolerant Rice: Recent Progress and Future Perspectives. Physiology and Molecular Biology of Plants, 14: 137-154.
  • Şen A, Sarsu F, 2018. Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters.Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(3): 315-320.
  • Şenay A, Kaya MD, Atak M, Çiftçi CY, 2005. Farklı tuz konsantrasyonlarının bazı ekmeklik buğday çeşitlerinin çimlenme ve fide gelişimi üzerine etkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi. 5 sayfa.
  • Takeda S, Matsuoka M, 2008. Genetic Approaches to Crop Improvement: Responding to Environmental and Population Changes. Nature Reviews Genetics, 9: 444-457.
  • Tomar RS, TiwariS, Naik BK, Chand S, Deshmukh R, Mallik N, 2016. Molecular and morpho-agronomical characterization of root architecture at seedling and reproductive stages for drought tolerance in wheat. Plos One, 11:e0156528.
  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR, 2008. Silicon improves salinity tolerance in wheat plants.Environmental and Experimental Botany, 62: 10–16.
  • Van Hoorn JW, 1991. Development of soil salinity during germination and early seedling growth and its effect on several crops. Agricultural Water Management, 20:17-28.
  • Veli S, Kırtok Y, Düzenli S, Tükel S, Kılınç M, 1994. Evaluation of salinity stress on germination characteristics and seedling growth of 3 bread wheats (Triticum aestivum L.). Tarla Bitkileri Kongresi, 25-29 Nisan 1994-İzmir, Cilt I, 57-61.
  • Yavaş İ, Akgül HN, Ünay A, 2019. Bitkilerin Kuraklığa Dayanıklılığını Artırmaya Yönelik Uygulamalar. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 4(1): 48-57.
  • Yıldız M, Kaya F, Terzi H, 2020. Kuraklık Stresi ve Bitki Proteomiği. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1): 286-297.
  • Zhang WJ, Zhang XJ, Lang DY, Li M, Liu H, Zhang XH, 2020. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photosynthesis and water status. Biologia Plantarum, 64: 302-313.
  • Zhu Y, Gong H, 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34: 455-472.
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Biyoloji / Biology
Yazarlar

Emel Dıraz Yıldırım 0000-0001-5299-8122

Hakan Güneş 0000-0002-4097-4729

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 13 Nisan 2021
Kabul Tarihi 28 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 4

Kaynak Göster

APA Dıraz Yıldırım, E., & Güneş, H. (2021). Tuz ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi. Journal of the Institute of Science and Technology, 11(4), 2559-2572. https://doi.org/10.21597/jist.915426
AMA Dıraz Yıldırım E, Güneş H. Tuz ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2021;11(4):2559-2572. doi:10.21597/jist.915426
Chicago Dıraz Yıldırım, Emel, ve Hakan Güneş. “Tuz Ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum Aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi”. Journal of the Institute of Science and Technology 11, sy. 4 (Aralık 2021): 2559-72. https://doi.org/10.21597/jist.915426.
EndNote Dıraz Yıldırım E, Güneş H (01 Aralık 2021) Tuz ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi. Journal of the Institute of Science and Technology 11 4 2559–2572.
IEEE E. Dıraz Yıldırım ve H. Güneş, “Tuz ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 4, ss. 2559–2572, 2021, doi: 10.21597/jist.915426.
ISNAD Dıraz Yıldırım, Emel - Güneş, Hakan. “Tuz Ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum Aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi”. Journal of the Institute of Science and Technology 11/4 (Aralık 2021), 2559-2572. https://doi.org/10.21597/jist.915426.
JAMA Dıraz Yıldırım E, Güneş H. Tuz ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2559–2572.
MLA Dıraz Yıldırım, Emel ve Hakan Güneş. “Tuz Ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum Aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi”. Journal of the Institute of Science and Technology, c. 11, sy. 4, 2021, ss. 2559-72, doi:10.21597/jist.915426.
Vancouver Dıraz Yıldırım E, Güneş H. Tuz ve Kuraklık Stresi Altında Yetiştirilen Buğday Bitkisine (Triticum aestivum L.) Silikon Uygulamalarının Bazı Stres Parametreleri Üzerine Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2559-72.