Tribonacci-Lucas Sequence Spaces
Yıl 2023,
Cilt: 13 Sayı: 1, 548 - 562, 01.03.2023
Murat Karakaş
,
Uğurcan Şevik
Öz
In this work, we basically define new sequence spaces using Tribonacci-Lucas numbers. Then, we give some inclusion relations by examining some topological properties of these spaces. We also characterize some matrix classes by calculating the Köthe-Toeplitz duals of our space. Finally, we examine whether our space has geometric properties such as uniform convexity, strict convexity, and superreflexivity.
Kaynakça
- Başar, F. (2011). Summability Theory and its Applications. Bentham Science Publishers. İstanbul.
- Başarır, M., Başar, F., Kara, EE. (2016). On the Spaces of Fibonacci Difference Absolutely p-
Summable, Null and Convergent Sequences. Sarajevo J. Math., 12 (25): 167-182.
- Candan, M., Kara, EE. (2015). A Study of Topological and Geometrical Characteristics of New
Banach Sequence Spaces. Gulf J. Math., 3 (4): 67-84.
- Catalani, M. (2002). Identities for Tribonacci-related Sequences. Cornell University Library. arXiv:
0209179.
- Chandra, P., Tripathy, BC. (2002). On Generalised Köthe-Toeplitz Duals of Some Sequence Spaces.
Indian J. Pure Appl. Math., 33: 1301-1306.
- Chidume, CE., (1965). Geometric Properties of Banach Spaces and Non-linear Iterations. Lecture
Notes in Mathematics. Springer-Verlag. Berlin.
- Choudary, B., Nanda, S. (1989). Functional Analysis with Applications. Wiley Eastern Limited. New
Delhi.
- Dağlı, MC., Yaying, T. (2022). Some new Paranormed Sequence Spaces Derived by Regular
Tribonacci Matrix. The Journal of Analysis, https://doi.org/10.1007/s41478-022-00442-w.
- Diestel, J. (1976). Geometry of Banach Spaces-Selected Topics. Lecture notes in Mathematics. Vol.
485. Springer-Verlag. Berlin.
- Ercan, S., Bektaş, Ç. (2017). Some Topological and Geometric Properties of a New BK-Space Derived
by Using Regular Matrix of Fibonacci Numbers. Linear and Multilinear Algebra, 65 (5): 909-
921.
- Feinberg, M. (1963). Fibonacci-Tribonacci. The Fibonacci Quarterly, 1 (3): 70 – 74.
- Frontczak, R. (2018). Sums of Tribonacci and Tribonacci-Lucas Numbers. International Journal of
Mathematical Analysis, 12 (1): 19-24.
- Gökçe, F. (2022). Absolute Lucas Spaces with Matrix and Compact Operators. Math. Sci. Appl. Enotes,
10 (1): 27-44.
- Gökçe, F., Sarıgöl, MA. (2020). Some Matrix and Compact Operators of the Absolute Fibonacci
Series Spaces. Kragujevac J. Math., 44 (2): 273-286.
- İlkhan, M., Kara., Kara, EE. (2021). Matrix Transformations and Compact Operators on Catalan
Sequence Spaces. J. Math. Anal. Appl., 498 (1): 124925.
- İlkhan, M., Kara, EE. (2019). A New Banach Space Defined by Euler Totient Matrix Operator.
Operators and Matrices, 13 (2): 527-544.
- İlkhan, M., Şimşek, N., Kara, EE. (2021). A New Regular Infinite Matrix Defined by Jordan Totient
Function and its Matrix Domain in p . Math. Meth. Appl. Sci., 44 (9): 7622-7633.
- James, CR. (1972). Super Reflexive Spaces with Bases. Pasific J. Math., 41: 409-419.
- Kamthan PK, Gupta M, 1981. Sequence Spaces and Series. Marcel Dekker Inc. New York and Basel.
- Kara, EE. (2013). Some Topological and Geometrical Properties of New Banach Sequence Spaces. J.
Inequal. Appl., 38: https://doi.org/10.1186/1029-242X-2013-38
- Kara, EE., Başarır, M. (2012). An Application of Fibonacci Numbers into Infinite Toeplitz Matrices.
Caspian J. Math. Sci., 1 (1): 43-47.
- Kara, EE., İlkhan, M. (2015). On Some Banach Sequence Spaces Derived by a New Band Matrix.
British J. Math. Comput. Sci., 9 (2): 141-159.
- Kara, EE., İlkhan, M. (2016). Some Properties of Generalized Fibonacci Sequence Spaces. Linear and
Multilinear Algebra, 64 (11): 2208-2223.
- Karakaş, M. (2021). Some Inclusion Results for the New Tribonacci-Lucas Matrix. BEU J. Sci. Tech.,
11 (2): 76-81.
- Karakaş, M., Karakaş, A. (2017). New Banach Sequence Spaces that is Defined by the aid Of Lucas
Numbers. Journal of the Institute of Science and Technology, 7 (4): 103-111.
- Karakaş, M., Karakaş, A. (2018). A Study on Lucas Difference Sequence Spaces ˆ , p l E r s and
l Eˆ r, s . Maejo Int. J. Sci. Tech., 12 (1): 70-78.
- Köthe, G., Toeplitz, O. (1934). Linear Raume mit Unendlich Vielen Koordinaten and Ringe
Unenlicher Matrizen. J. Rreine Angew. Math., 171: 193-226.
- Mursaleen M, Noman AK, 2010. On the Spaces of Convergent and Bounded Sequences. Thai J.
Math., 8: 311-329.
- Mursaleen, M., Noman, AK. (2011). On Some New Sequence Spaces of Non-Absolute Type Related
to the Spaces p and I. Filomat, 25: 33-51.
- Stieglitz, M., Tietz, H. (1977). Matrixtransformationen von Folgenraumen eine Ergebnisübersicht.
Math. Z., 154: 1-16.
- Wilansky, A. (1984). Summability Through Functional Analysis. North-Holland Mathematics Studies
Vol. 85. Elseiver. Amsterdam.
- Yaying, T., Hazarika, B. (2020). On Sequence Spaces Defined by the Domain of a Regular Tribonacci
Matrix. Math. Slovaca, 70 (3): 697-706.
- Yaying, T., Hazarika, B., Mohiuddine, SA. (2021). On Difference Sequence Spaces of Fractional
Order Involving Padovan Numbers, Asian-European J. Math., 14 (6): 1-24.
- Yaying, T., Kara, MI. (2021). On Sequence Spaces Defined by the Domain of Tribonacci Matrix in 𝑐0
and 𝑐. Korean J. Math., 29 (1): 25-40.
Tribonacci-Lucas Dizi Uzayları
Yıl 2023,
Cilt: 13 Sayı: 1, 548 - 562, 01.03.2023
Murat Karakaş
,
Uğurcan Şevik
Öz
Bu araştırmada, temel olarak Tribonacci-Lucas sayılarını kullanarak yeni dizi uzayları
tanımlıyoruz. Daha sonra bu uzayın bazı topolojik özelliklerini inceleyerek, bazı
kapsama bağıntıları veriyoruz. Ayrıca uzayımızın Köthe-Toeplitz duallerini
hesaplayarak, bazı matris sınıflarını karakterize ediyoruz. Son olarak, uzayımızın
düzgün konvekslik, kesin konvekslik, süper yansımalılık gibi geometrik özelliklere
sahip olup olmadığını inceliyoruz.
Kaynakça
- Başar, F. (2011). Summability Theory and its Applications. Bentham Science Publishers. İstanbul.
- Başarır, M., Başar, F., Kara, EE. (2016). On the Spaces of Fibonacci Difference Absolutely p-
Summable, Null and Convergent Sequences. Sarajevo J. Math., 12 (25): 167-182.
- Candan, M., Kara, EE. (2015). A Study of Topological and Geometrical Characteristics of New
Banach Sequence Spaces. Gulf J. Math., 3 (4): 67-84.
- Catalani, M. (2002). Identities for Tribonacci-related Sequences. Cornell University Library. arXiv:
0209179.
- Chandra, P., Tripathy, BC. (2002). On Generalised Köthe-Toeplitz Duals of Some Sequence Spaces.
Indian J. Pure Appl. Math., 33: 1301-1306.
- Chidume, CE., (1965). Geometric Properties of Banach Spaces and Non-linear Iterations. Lecture
Notes in Mathematics. Springer-Verlag. Berlin.
- Choudary, B., Nanda, S. (1989). Functional Analysis with Applications. Wiley Eastern Limited. New
Delhi.
- Dağlı, MC., Yaying, T. (2022). Some new Paranormed Sequence Spaces Derived by Regular
Tribonacci Matrix. The Journal of Analysis, https://doi.org/10.1007/s41478-022-00442-w.
- Diestel, J. (1976). Geometry of Banach Spaces-Selected Topics. Lecture notes in Mathematics. Vol.
485. Springer-Verlag. Berlin.
- Ercan, S., Bektaş, Ç. (2017). Some Topological and Geometric Properties of a New BK-Space Derived
by Using Regular Matrix of Fibonacci Numbers. Linear and Multilinear Algebra, 65 (5): 909-
921.
- Feinberg, M. (1963). Fibonacci-Tribonacci. The Fibonacci Quarterly, 1 (3): 70 – 74.
- Frontczak, R. (2018). Sums of Tribonacci and Tribonacci-Lucas Numbers. International Journal of
Mathematical Analysis, 12 (1): 19-24.
- Gökçe, F. (2022). Absolute Lucas Spaces with Matrix and Compact Operators. Math. Sci. Appl. Enotes,
10 (1): 27-44.
- Gökçe, F., Sarıgöl, MA. (2020). Some Matrix and Compact Operators of the Absolute Fibonacci
Series Spaces. Kragujevac J. Math., 44 (2): 273-286.
- İlkhan, M., Kara., Kara, EE. (2021). Matrix Transformations and Compact Operators on Catalan
Sequence Spaces. J. Math. Anal. Appl., 498 (1): 124925.
- İlkhan, M., Kara, EE. (2019). A New Banach Space Defined by Euler Totient Matrix Operator.
Operators and Matrices, 13 (2): 527-544.
- İlkhan, M., Şimşek, N., Kara, EE. (2021). A New Regular Infinite Matrix Defined by Jordan Totient
Function and its Matrix Domain in p . Math. Meth. Appl. Sci., 44 (9): 7622-7633.
- James, CR. (1972). Super Reflexive Spaces with Bases. Pasific J. Math., 41: 409-419.
- Kamthan PK, Gupta M, 1981. Sequence Spaces and Series. Marcel Dekker Inc. New York and Basel.
- Kara, EE. (2013). Some Topological and Geometrical Properties of New Banach Sequence Spaces. J.
Inequal. Appl., 38: https://doi.org/10.1186/1029-242X-2013-38
- Kara, EE., Başarır, M. (2012). An Application of Fibonacci Numbers into Infinite Toeplitz Matrices.
Caspian J. Math. Sci., 1 (1): 43-47.
- Kara, EE., İlkhan, M. (2015). On Some Banach Sequence Spaces Derived by a New Band Matrix.
British J. Math. Comput. Sci., 9 (2): 141-159.
- Kara, EE., İlkhan, M. (2016). Some Properties of Generalized Fibonacci Sequence Spaces. Linear and
Multilinear Algebra, 64 (11): 2208-2223.
- Karakaş, M. (2021). Some Inclusion Results for the New Tribonacci-Lucas Matrix. BEU J. Sci. Tech.,
11 (2): 76-81.
- Karakaş, M., Karakaş, A. (2017). New Banach Sequence Spaces that is Defined by the aid Of Lucas
Numbers. Journal of the Institute of Science and Technology, 7 (4): 103-111.
- Karakaş, M., Karakaş, A. (2018). A Study on Lucas Difference Sequence Spaces ˆ , p l E r s and
l Eˆ r, s . Maejo Int. J. Sci. Tech., 12 (1): 70-78.
- Köthe, G., Toeplitz, O. (1934). Linear Raume mit Unendlich Vielen Koordinaten and Ringe
Unenlicher Matrizen. J. Rreine Angew. Math., 171: 193-226.
- Mursaleen M, Noman AK, 2010. On the Spaces of Convergent and Bounded Sequences. Thai J.
Math., 8: 311-329.
- Mursaleen, M., Noman, AK. (2011). On Some New Sequence Spaces of Non-Absolute Type Related
to the Spaces p and I. Filomat, 25: 33-51.
- Stieglitz, M., Tietz, H. (1977). Matrixtransformationen von Folgenraumen eine Ergebnisübersicht.
Math. Z., 154: 1-16.
- Wilansky, A. (1984). Summability Through Functional Analysis. North-Holland Mathematics Studies
Vol. 85. Elseiver. Amsterdam.
- Yaying, T., Hazarika, B. (2020). On Sequence Spaces Defined by the Domain of a Regular Tribonacci
Matrix. Math. Slovaca, 70 (3): 697-706.
- Yaying, T., Hazarika, B., Mohiuddine, SA. (2021). On Difference Sequence Spaces of Fractional
Order Involving Padovan Numbers, Asian-European J. Math., 14 (6): 1-24.
- Yaying, T., Kara, MI. (2021). On Sequence Spaces Defined by the Domain of Tribonacci Matrix in 𝑐0
and 𝑐. Korean J. Math., 29 (1): 25-40.