Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural, Morphological and Optical Properties of Zn0.95-xCu0.05CoxO Synthesized by Co-Precipitation Method

Yıl 2023, Cilt: 13 Sayı: 2, 1013 - 1025, 01.06.2023
https://doi.org/10.21597/jist.1243756

Öz

There is increasing interest in the synthesis, characterization and application of mixed oxides for better
functional performance compared to base metal oxides. In this study, Zn0.95-xCu0.05CoxO (0 ≤ x ≤ 0.05)
nanocomposites were synthesized by co-precipitation method. The synthesized samples were
characterized for its structural, compositional and optical properties using by X-ray Diffraction
(XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray
Photoelectron Spectroscopy (XPS), Raman spectroscopy and UV–Vis absorption spectroscopy.
According to XRD results, it is seen that the würtzite structure of hexagonal ZnO does not change. In
addition, it can be said that the separate phases of Cu2O and Co3O4 are formed due to the unreacted
parts of Cu+
and Co+3 ions. This is also confirmed by XPS results. The average crystallite size of the
Zn0.95-xCu0.05CoxO nanocomposites were found in the range of 30.02-22.00 nm. It is seen that the
crystal growth decreases as a result of Cu and Co doping in ZnO. SEM images show that all samples
are composed of spherical nanoparticles. EDS spectra confirms the presence of Zn, Cu, Co, and O
atoms in the samples with expected stoichiometry. As the Co concentration increases from x=0.00 to
x= 0.05, the band gap increases from 3.26 eV to 3.57 eV.

Kaynakça

  • Abebe, E. M., & Ujihara, M. (2021). Influence of temperature on ZnO/Co3O4 nanocomposites for high energy storage supercapacitors. ACS omega, 6(37), 23750-23763.
  • Akcan, D., Ozharar, S., Ozugurlu, E., & Arda, L. (2019). The effects of Co/Cu Co-doped ZnO thin films: An optical study. Journal of Alloys and Compounds, 797, 253-261.
  • Aldeen, T. S., Mohamed, H. E. A., & Maaza, M. (2022). ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids, 160, 110313.
  • Al-Namshah, K. S., Shkir, M., Ibrahim, F. A., & Hamdy, M. S. (2022). Auto combustion synthesis and characterization of Co doped ZnO nanoparticles with boosted photocatalytic performance. Physica B: Condensed Matter, 625, 413459.
  • Amari, R., Benrezgua, E., Deghfel, B., Abdelhalim, Z., Yaakob, M. K., Basirun, W. J., ... & Mohamad, A. A. (2022). Ni doping effect on the electronic, structural and optical properties of ZnO nanoparticles prepared by Co-precipitation route. Optical Materials, 128, 112398.
  • Anandan, S., Muthukumaran, S., & Ashokkumar, M. (2014). Modifications in band gap and optical properties of Zn 0.96− x Nd 0.04 Cu x O (x= 0, 0.05, 0.1 and 0.15) nanoparticles. Journal of solgel science and technology, 70, 133-141.
  • Arshad, M., Azam, A., Ahmed, A. S., Mollah, S., & Naqvi, A. H. (2011). Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route. Journal of alloys and Compounds, 509(33), 8378-8381.
  • Ashokkumar, M., & Muthukumaran, S. (2014). Microstructure and band gap tailoring of Zn0. 96− xCu0. 04CoxO (0⩽ x⩽ 0.04) nanoparticles prepared by co-precipitation method. Journal of alloys and compounds, 587, 606-612.
  • Ashokkumar, M., & Muthukumaran, S. (2015). Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. Journal of Magnetism and Magnetic Materials, 374, 61-66.
  • Aslan, E., & Zarbali, M. (2022). Tuning of photosensitivity and optical parameters of ZnO based photodetectors by co-Sn and Ti doping. Optical Materials, 125, 112030.
  • Badawi, A., Althobaiti, M. G., Ali, E. E., Alharthi, S. S., & Alharbi, A. N. (2022). A comparative study of the structural and optical properties of transition metals (M= Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Optical Materials, 124, 112055.
  • Bhatia, P., & Nath, M. (2022). Nanocomposites of ternary mixed metal oxides (Ag2O/NiO/ZnO) used for the efficient removal of organic pollutants. Journal of Water Process Engineering, 49, 102961.
  • Chai, C., Liu, H., & Yu, W. (2021). The electronic and optical properties of the Fe, Co, Ni and Cu doped ZnO monolayer photocatalyst. Chemical Physics Letters, 778, 138765.
  • Chakraborti, D., Ramachandran, S., Trichy, G., Narayan, J., & Prater, J. T. (2007). Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. Journal of Applied Physics, 101(5), 053918.
  • Chandekar, K. V., Shkir, M., Yadav, S. P., Behera, P. K., & AlFaify, S. (2022). Facile synthesis of Mndoped ZnO nanoparticles by flash combustion route and their characterizations for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 1-21.
  • Cheng, K., Cao, D., Yang, F., Xu, Y., Sun, G., Ye, K., ... & Wang, G. (2014). Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction. Journal of Power Sources, 253, 214-223.
  • Czyżowska, A., & Barbasz, A. (2022). A review: zinc oxide nanoparticles–friends or enemies?. International Journal of Environmental Health Research, 32(4), 885-901.
  • Das, S., Bandyopadhyay, A., Saha, P., Das, S., & Sutradhar, S. (2018). Enhancement of roomtemperature ferromagnetism and dielectric response in nanocrystalline ZnO co-doped with Co and Cu. Journal of Alloys and Compounds, 749, 1-9.
  • Dalebout, R., Barberis, L., Totarella, G., Turner, S. J., La Fontaine, C., de Groot, F. M., ... & de Jongh, P. E. (2022). Insight into the Nature of the ZnO x Promoter during Methanol Synthesis. ACS catalysis, 12(11), 6628-6639.
  • Erwin, S. C., Zu, L., Haftel, M. I., Efros, A. L., Kennedy, T. A., & Norris, D. J. (2005). Doping semiconductor nanocrystals. Nature, 436(7047), 91-94.
  • Escobedo-Morales, A., Aranda-García, R. J., Chigo-Anota, E., Pérez-Centeno, A., Méndez-Blas, A., & Arana-Toro, C. G. (2016). ZnO micro-and nanostructures obtained by thermal oxidation: microstructure, morphogenesis, optical, and photoluminescence properties. Crystals, 6(10), 135.
  • Goktas, A. (2018). High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin films: Comparison of the effects of air and argon annealing environments. Journal of Alloys and Compounds, 735, 2038-2045.
  • Hammad, T. M., Salem, J. K., & Harrison, R. G. (2013). Structure, optical properties and synthesis of Co-doped ZnO superstructures. Applied Nanoscience, 3, 133-139.
  • Hu, F., Liu, Q., Sun, Z., Yao, T., Pan, Z., Li, Y., ... & Wei, S. (2011). Cu and Co codoping effects on room-temperature ferromagnetism of (Co, Cu): ZnO dilute magnetic semiconductors. Journal of Applied Physics, 109(10), 103705.
  • Hussain, I., Sahoo, S., Mohapatra, D., Ahmad, M., Iqbal, S., Javed, M. S., ... & Zhang, K. (2022). Recent progress in trimetallic/ternary-metal oxides nanostructures: Misinterpretation/misconception of electrochemical data and devices. Applied Materials Today, 26, 101297.
  • Janani, F. Z., Khiar, H., Taoufik, N., Elhalil, A., Sadiq, M., Puga, A. V., ... & Barka, N. (2021). ZnO– Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation. Materials Today Chemistry, 21, 100495.
  • Kang, S. K., Kang, D. Y., Park, J. W., Son, K. R., & Kim, T. G. (2021). Work function-tunable ZnO/Ag/ZnO film as an effective hole injection electrode prepared via nickel doping for thermally activated delayed fluorescence-based flexible blue organic light-emitting diodes. Applied Surface Science, 538, 148202.
  • Kannan, K., Radhika, D., Gnanasangeetha, D., Krishna, L. S., & Gurushankar, K. (2021). Y3+ and Sm3+ co-doped mixed metal oxide nanocomposite: Structural, electrochemical, photocatalytic, and antibacterial properties. Applied Surface Science Advances, 4, 100085.
  • Van Khai, T., Thanh, V. M., & Dai Lam, T. (2018). Structural, optical and gas sensing properties of vertically well-aligned ZnO nanowires grown on graphene/Si substrate by thermal evaporation method. Materials Characterization, 141, 296-317.
  • Khudiar, S. S., Nayef, U. M., Mutlak, F. A. H., & Abdulridha, S. K. (2022). Characterization of NO2 gas sensing for ZnO nanostructure grown hydrothermally on porous silicon. Optik, 249, 168300.
  • Klug, H. P., & Alexander, L. E. (1974). X-ray diffraction procedures: for polycrystalline and amorphous materials (p. 992).
  • Lahkale, R., Sadik, R., Elhatimi, W., Bouragba, F. Z., Assekouri, A., Chouni, K., ... & Sabbar, E. (2022). Optical, electrical and dielectric properties of mixed metal oxides derived from Mg-Al Layered Double Hydroxides based solid solution series. Physica B: Condensed Matter, 626, 413367.
  • Lao, X., Ren, X., Yan, Y., Jiang, H., Zhong, M., Kong, A., ... & Shi, L. (2022). Effects of dispersant on electrical properties of zinc-oxide varistors and methods to improve protection performance. Journal of Electronic Materials, 51(9), 5169-5180.
  • Liu, Y., Wang, Z., Li, L., Gao, S., Zheng, D., Yu, X., ... & Xiong, Y. (2022). Highly efficient quantumdot-sensitized solar cells with composite semiconductor of ZnO nanorod and oxide inverse opal in photoanode. Electrochimica Acta, 412, 140145.
  • Menezes, P. W., Indra, A., González-Flores, D., Sahraie, N. R., Zaharieva, I., Schwarze, M., ... & Driess, M. (2015). High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: morphology-dependent activity. ACS Catalysis, 5(4), 2017-2027.
  • Nadeem, M. S., Munawar, T., Mukhtar, F., ur Rahman, M. N., Riaz, M., Hussain, A., & Iqbal, F. (2021). Hydrothermally derived co, Ni co-doped ZnO nanorods; structural, optical, and morphological study. Optical Materials, 111, 110606.
  • Ney, V., Venkataraman, V., Henne, B., Ollefs, K., Wilhelm, F., Rogalev, A., & Ney, A. (2016). Co and Cu co-doped ZnO epitaxial films—A magnetically soft nano-composite. Journal of Applied Physics, 119(16), 163901.
  • Qiu, P., Chen, H., & Jiang, F. (2014). Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Rsc Advances, 4(75), 39969-39977.
  • Quan, Z., Li, D., Sebo, B., Liu, W., Guo, S., Xu, S., ... & Zhao, X. (2010). Microstructures, surface bonding states and room temperature ferromagnetisms of Zn0. 95Co0. 05O thin films doped with copper. Applied surface science, 256(11), 3669-3675.
  • Prabakar, C., Muthukumaran, S., & Raja, V. (2021). Investigation on microstructure, energy gap, photoluminescence and magnetic studies of Co and Cu in situ doped ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 32, 9702-9720.
  • Rise, M. S., Ranjbar, A. H., Noori, H., & Saheb, V. (2022). Synthesis and characterization of ZnO nanorods-Zn2SiO4 nanoparticles-PMMA nanocomposites for UV-C protection. Optical Materials, 123, 111922.
  • Safeen, A., Safeen, K., Shafique, M., Iqbal, Y., Ahmed, N., Khan, M. A. R., ... & Khan, R. (2022). The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures. RSC advances, 12(19), 11923-11932.
  • Shishodia, P. K. (2016). Effect of cobalt doping on ZnO thin films deposited by sol-gel method. Thin Solid Films, 612, 55-60.
  • Subhan, M. A., Saha, P. C., Akand, M. A. R., Asiri, A. M., Al‐Mamun, M., & Rahman, M. M. (2022). Highly sensitive and efficient hydrazine sensor probe development based on MoO3/CuO/ZnO ternary mixed metal oxide nano‐composites for sustainable environment. Electrochemical Science Advances, 2(1), e2100031.
  • Sundarakannan, B., & Kottaisamy, M. (2022). Blue light excitable red emitting ZnO and its blend for high CRI white light emitting diodes applications. Journal of Luminescence, 241, 118447.
  • Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15(2), 627-637.
  • Tiwari, N., Doke, S., Lohar, A., Mahamuni, S., Kamal, C., Chakrabarti, A., ... & Bhattacharyya, D. (2016). Local structure investigation of (Co, Cu) co-doped ZnO nanocrystals and its correlation with magnetic properties. Journal of Physics and Chemistry of Solids, 90, 100-113.
  • Vasudevan, J., Jeyakumar, S. J., Arunkumar, B., Jothibas, M., Muthuvel, A., & Vijayalakshmi, S. (2022). Optical and magnetic investigation of cu doped ZnO nanoparticles synthesized by solid state method. Materials Today: Proceedings, 48, 438-442.
  • Vivek, S., Preethi, S., & Babu, K. S. (2022). Interfacial effect of mono (Cu, Ni) and bimetallic (Cu–Ni) decorated ZnO nanoparticles on the sunlight assisted photocatalytic activity. Materials Chemistry and Physics, 278, 125669.
  • Yuan, H., Du, X., & Xu, M. (2016). Ferromagnetic mechanism of (Co, Cu)-codoped ZnO films with different Co concentrations investigated by X-ray photoelectron spectroscopy. Physica E: LowDimensional Systems and Nanostructures, 79, 119-126.
  • Wu, H., Li, C., Che, H., Hu, H., Hu, W., Liu, C., ... & Dong, H. (2018). Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance. Applied Surface Science, 440, 308-319.
  • Xu, M., Yuan, H., You, B., Zhou, P. F., Dong, C. J., & Duan, M. Y. (2014). Structural, optical, and magnetic properties of (Co, Cu)-codoped ZnO films with different Co concentrations. Journal of Applied Physics, 115(9), 093503.

Birlikte Çöktürme Yöntemi ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik ve Optik Özellikleri

Yıl 2023, Cilt: 13 Sayı: 2, 1013 - 1025, 01.06.2023
https://doi.org/10.21597/jist.1243756

Öz

Temel metal oksitlere kıyasla daha iyi fonksiyonel performans için karışık oksitlerin sentezi,
karakterizasyonu ve uygulamasına olan ilgi giderek artmaktadır. Bu çalışmada, Zn0.95-xCu0.05CoxO (0
≤ x ≤ 0.05) nanokompozitleri birlikte çöktürme yöntemi ile sentezlendi. Sentezlenen örnekler, X-ışını
Kırınımı (XRD), Taramalı Elektron Mikroskobu (SEM), Enerji Dağılım Spektroskopisi (EDS), Xışını Fotoelektron Spektroskopisi (XPS), Raman spektroskopisi ve UV–Vis absorpsiyon
spektroskopisi kullanılarak yapısal, bileşimsel ve optik özellikleri açısından karakterize edildi. XRD
sonuçlarına göre altıgen ZnO’nun würtzit yapısının değişmediği görülmektedir. Ayrıca, Cu2O ve
Co3O4'ün ayrı fazlarının Cu+ ve Co+3 iyonlarının reaksiyona girmeden kalan kısımlarından dolayı
oluştuğu söylenebilir. Bu XPS sonuçları ile de teyit edilmiştir. Zn0.95-xCu0.05CoxO
nanokompozitlerinin ortalama kristal boyutları 30.61-27.24 nm aralığında bulundu. ZnO'da Cu ve Co
katkısının bir sonucu olarak kristal büyümenin azaldığı görülmektedir. SEM görüntülerinde, tüm
örneklerin küresel nanopartiküllerden oluştuğu görülmektedir. EDS spektrumu beklenen stokiyometri
ile numunelerde Zn, Cu, Co ve O atomlarının varlığını doğrulamaktadır. Co konsantrasyonu
x=0.00'den x= 0.05'e arttıkça, bant aralığı 3.26 eV'den 3.57 eV'ye artmıştır.

Kaynakça

  • Abebe, E. M., & Ujihara, M. (2021). Influence of temperature on ZnO/Co3O4 nanocomposites for high energy storage supercapacitors. ACS omega, 6(37), 23750-23763.
  • Akcan, D., Ozharar, S., Ozugurlu, E., & Arda, L. (2019). The effects of Co/Cu Co-doped ZnO thin films: An optical study. Journal of Alloys and Compounds, 797, 253-261.
  • Aldeen, T. S., Mohamed, H. E. A., & Maaza, M. (2022). ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids, 160, 110313.
  • Al-Namshah, K. S., Shkir, M., Ibrahim, F. A., & Hamdy, M. S. (2022). Auto combustion synthesis and characterization of Co doped ZnO nanoparticles with boosted photocatalytic performance. Physica B: Condensed Matter, 625, 413459.
  • Amari, R., Benrezgua, E., Deghfel, B., Abdelhalim, Z., Yaakob, M. K., Basirun, W. J., ... & Mohamad, A. A. (2022). Ni doping effect on the electronic, structural and optical properties of ZnO nanoparticles prepared by Co-precipitation route. Optical Materials, 128, 112398.
  • Anandan, S., Muthukumaran, S., & Ashokkumar, M. (2014). Modifications in band gap and optical properties of Zn 0.96− x Nd 0.04 Cu x O (x= 0, 0.05, 0.1 and 0.15) nanoparticles. Journal of solgel science and technology, 70, 133-141.
  • Arshad, M., Azam, A., Ahmed, A. S., Mollah, S., & Naqvi, A. H. (2011). Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route. Journal of alloys and Compounds, 509(33), 8378-8381.
  • Ashokkumar, M., & Muthukumaran, S. (2014). Microstructure and band gap tailoring of Zn0. 96− xCu0. 04CoxO (0⩽ x⩽ 0.04) nanoparticles prepared by co-precipitation method. Journal of alloys and compounds, 587, 606-612.
  • Ashokkumar, M., & Muthukumaran, S. (2015). Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. Journal of Magnetism and Magnetic Materials, 374, 61-66.
  • Aslan, E., & Zarbali, M. (2022). Tuning of photosensitivity and optical parameters of ZnO based photodetectors by co-Sn and Ti doping. Optical Materials, 125, 112030.
  • Badawi, A., Althobaiti, M. G., Ali, E. E., Alharthi, S. S., & Alharbi, A. N. (2022). A comparative study of the structural and optical properties of transition metals (M= Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Optical Materials, 124, 112055.
  • Bhatia, P., & Nath, M. (2022). Nanocomposites of ternary mixed metal oxides (Ag2O/NiO/ZnO) used for the efficient removal of organic pollutants. Journal of Water Process Engineering, 49, 102961.
  • Chai, C., Liu, H., & Yu, W. (2021). The electronic and optical properties of the Fe, Co, Ni and Cu doped ZnO monolayer photocatalyst. Chemical Physics Letters, 778, 138765.
  • Chakraborti, D., Ramachandran, S., Trichy, G., Narayan, J., & Prater, J. T. (2007). Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. Journal of Applied Physics, 101(5), 053918.
  • Chandekar, K. V., Shkir, M., Yadav, S. P., Behera, P. K., & AlFaify, S. (2022). Facile synthesis of Mndoped ZnO nanoparticles by flash combustion route and their characterizations for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 1-21.
  • Cheng, K., Cao, D., Yang, F., Xu, Y., Sun, G., Ye, K., ... & Wang, G. (2014). Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction. Journal of Power Sources, 253, 214-223.
  • Czyżowska, A., & Barbasz, A. (2022). A review: zinc oxide nanoparticles–friends or enemies?. International Journal of Environmental Health Research, 32(4), 885-901.
  • Das, S., Bandyopadhyay, A., Saha, P., Das, S., & Sutradhar, S. (2018). Enhancement of roomtemperature ferromagnetism and dielectric response in nanocrystalline ZnO co-doped with Co and Cu. Journal of Alloys and Compounds, 749, 1-9.
  • Dalebout, R., Barberis, L., Totarella, G., Turner, S. J., La Fontaine, C., de Groot, F. M., ... & de Jongh, P. E. (2022). Insight into the Nature of the ZnO x Promoter during Methanol Synthesis. ACS catalysis, 12(11), 6628-6639.
  • Erwin, S. C., Zu, L., Haftel, M. I., Efros, A. L., Kennedy, T. A., & Norris, D. J. (2005). Doping semiconductor nanocrystals. Nature, 436(7047), 91-94.
  • Escobedo-Morales, A., Aranda-García, R. J., Chigo-Anota, E., Pérez-Centeno, A., Méndez-Blas, A., & Arana-Toro, C. G. (2016). ZnO micro-and nanostructures obtained by thermal oxidation: microstructure, morphogenesis, optical, and photoluminescence properties. Crystals, 6(10), 135.
  • Goktas, A. (2018). High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin films: Comparison of the effects of air and argon annealing environments. Journal of Alloys and Compounds, 735, 2038-2045.
  • Hammad, T. M., Salem, J. K., & Harrison, R. G. (2013). Structure, optical properties and synthesis of Co-doped ZnO superstructures. Applied Nanoscience, 3, 133-139.
  • Hu, F., Liu, Q., Sun, Z., Yao, T., Pan, Z., Li, Y., ... & Wei, S. (2011). Cu and Co codoping effects on room-temperature ferromagnetism of (Co, Cu): ZnO dilute magnetic semiconductors. Journal of Applied Physics, 109(10), 103705.
  • Hussain, I., Sahoo, S., Mohapatra, D., Ahmad, M., Iqbal, S., Javed, M. S., ... & Zhang, K. (2022). Recent progress in trimetallic/ternary-metal oxides nanostructures: Misinterpretation/misconception of electrochemical data and devices. Applied Materials Today, 26, 101297.
  • Janani, F. Z., Khiar, H., Taoufik, N., Elhalil, A., Sadiq, M., Puga, A. V., ... & Barka, N. (2021). ZnO– Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation. Materials Today Chemistry, 21, 100495.
  • Kang, S. K., Kang, D. Y., Park, J. W., Son, K. R., & Kim, T. G. (2021). Work function-tunable ZnO/Ag/ZnO film as an effective hole injection electrode prepared via nickel doping for thermally activated delayed fluorescence-based flexible blue organic light-emitting diodes. Applied Surface Science, 538, 148202.
  • Kannan, K., Radhika, D., Gnanasangeetha, D., Krishna, L. S., & Gurushankar, K. (2021). Y3+ and Sm3+ co-doped mixed metal oxide nanocomposite: Structural, electrochemical, photocatalytic, and antibacterial properties. Applied Surface Science Advances, 4, 100085.
  • Van Khai, T., Thanh, V. M., & Dai Lam, T. (2018). Structural, optical and gas sensing properties of vertically well-aligned ZnO nanowires grown on graphene/Si substrate by thermal evaporation method. Materials Characterization, 141, 296-317.
  • Khudiar, S. S., Nayef, U. M., Mutlak, F. A. H., & Abdulridha, S. K. (2022). Characterization of NO2 gas sensing for ZnO nanostructure grown hydrothermally on porous silicon. Optik, 249, 168300.
  • Klug, H. P., & Alexander, L. E. (1974). X-ray diffraction procedures: for polycrystalline and amorphous materials (p. 992).
  • Lahkale, R., Sadik, R., Elhatimi, W., Bouragba, F. Z., Assekouri, A., Chouni, K., ... & Sabbar, E. (2022). Optical, electrical and dielectric properties of mixed metal oxides derived from Mg-Al Layered Double Hydroxides based solid solution series. Physica B: Condensed Matter, 626, 413367.
  • Lao, X., Ren, X., Yan, Y., Jiang, H., Zhong, M., Kong, A., ... & Shi, L. (2022). Effects of dispersant on electrical properties of zinc-oxide varistors and methods to improve protection performance. Journal of Electronic Materials, 51(9), 5169-5180.
  • Liu, Y., Wang, Z., Li, L., Gao, S., Zheng, D., Yu, X., ... & Xiong, Y. (2022). Highly efficient quantumdot-sensitized solar cells with composite semiconductor of ZnO nanorod and oxide inverse opal in photoanode. Electrochimica Acta, 412, 140145.
  • Menezes, P. W., Indra, A., González-Flores, D., Sahraie, N. R., Zaharieva, I., Schwarze, M., ... & Driess, M. (2015). High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: morphology-dependent activity. ACS Catalysis, 5(4), 2017-2027.
  • Nadeem, M. S., Munawar, T., Mukhtar, F., ur Rahman, M. N., Riaz, M., Hussain, A., & Iqbal, F. (2021). Hydrothermally derived co, Ni co-doped ZnO nanorods; structural, optical, and morphological study. Optical Materials, 111, 110606.
  • Ney, V., Venkataraman, V., Henne, B., Ollefs, K., Wilhelm, F., Rogalev, A., & Ney, A. (2016). Co and Cu co-doped ZnO epitaxial films—A magnetically soft nano-composite. Journal of Applied Physics, 119(16), 163901.
  • Qiu, P., Chen, H., & Jiang, F. (2014). Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Rsc Advances, 4(75), 39969-39977.
  • Quan, Z., Li, D., Sebo, B., Liu, W., Guo, S., Xu, S., ... & Zhao, X. (2010). Microstructures, surface bonding states and room temperature ferromagnetisms of Zn0. 95Co0. 05O thin films doped with copper. Applied surface science, 256(11), 3669-3675.
  • Prabakar, C., Muthukumaran, S., & Raja, V. (2021). Investigation on microstructure, energy gap, photoluminescence and magnetic studies of Co and Cu in situ doped ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 32, 9702-9720.
  • Rise, M. S., Ranjbar, A. H., Noori, H., & Saheb, V. (2022). Synthesis and characterization of ZnO nanorods-Zn2SiO4 nanoparticles-PMMA nanocomposites for UV-C protection. Optical Materials, 123, 111922.
  • Safeen, A., Safeen, K., Shafique, M., Iqbal, Y., Ahmed, N., Khan, M. A. R., ... & Khan, R. (2022). The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures. RSC advances, 12(19), 11923-11932.
  • Shishodia, P. K. (2016). Effect of cobalt doping on ZnO thin films deposited by sol-gel method. Thin Solid Films, 612, 55-60.
  • Subhan, M. A., Saha, P. C., Akand, M. A. R., Asiri, A. M., Al‐Mamun, M., & Rahman, M. M. (2022). Highly sensitive and efficient hydrazine sensor probe development based on MoO3/CuO/ZnO ternary mixed metal oxide nano‐composites for sustainable environment. Electrochemical Science Advances, 2(1), e2100031.
  • Sundarakannan, B., & Kottaisamy, M. (2022). Blue light excitable red emitting ZnO and its blend for high CRI white light emitting diodes applications. Journal of Luminescence, 241, 118447.
  • Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15(2), 627-637.
  • Tiwari, N., Doke, S., Lohar, A., Mahamuni, S., Kamal, C., Chakrabarti, A., ... & Bhattacharyya, D. (2016). Local structure investigation of (Co, Cu) co-doped ZnO nanocrystals and its correlation with magnetic properties. Journal of Physics and Chemistry of Solids, 90, 100-113.
  • Vasudevan, J., Jeyakumar, S. J., Arunkumar, B., Jothibas, M., Muthuvel, A., & Vijayalakshmi, S. (2022). Optical and magnetic investigation of cu doped ZnO nanoparticles synthesized by solid state method. Materials Today: Proceedings, 48, 438-442.
  • Vivek, S., Preethi, S., & Babu, K. S. (2022). Interfacial effect of mono (Cu, Ni) and bimetallic (Cu–Ni) decorated ZnO nanoparticles on the sunlight assisted photocatalytic activity. Materials Chemistry and Physics, 278, 125669.
  • Yuan, H., Du, X., & Xu, M. (2016). Ferromagnetic mechanism of (Co, Cu)-codoped ZnO films with different Co concentrations investigated by X-ray photoelectron spectroscopy. Physica E: LowDimensional Systems and Nanostructures, 79, 119-126.
  • Wu, H., Li, C., Che, H., Hu, H., Hu, W., Liu, C., ... & Dong, H. (2018). Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance. Applied Surface Science, 440, 308-319.
  • Xu, M., Yuan, H., You, B., Zhou, P. F., Dong, C. J., & Duan, M. Y. (2014). Structural, optical, and magnetic properties of (Co, Cu)-codoped ZnO films with different Co concentrations. Journal of Applied Physics, 115(9), 093503.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Sinem Kayar 0000-0003-1680-1227

Neslihan Erat 0000-0003-2174-4108

Abdulkadir Özer 0000-0002-0487-3680

Erken Görünüm Tarihi 27 Mayıs 2023
Yayımlanma Tarihi 1 Haziran 2023
Gönderilme Tarihi 28 Ocak 2023
Kabul Tarihi 17 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

APA Kayar, S., Erat, N., & Özer, A. (2023). Birlikte Çöktürme Yöntemi ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik ve Optik Özellikleri. Journal of the Institute of Science and Technology, 13(2), 1013-1025. https://doi.org/10.21597/jist.1243756
AMA Kayar S, Erat N, Özer A. Birlikte Çöktürme Yöntemi ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik ve Optik Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2023;13(2):1013-1025. doi:10.21597/jist.1243756
Chicago Kayar, Sinem, Neslihan Erat, ve Abdulkadir Özer. “Birlikte Çöktürme Yöntemi Ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik Ve Optik Özellikleri”. Journal of the Institute of Science and Technology 13, sy. 2 (Haziran 2023): 1013-25. https://doi.org/10.21597/jist.1243756.
EndNote Kayar S, Erat N, Özer A (01 Haziran 2023) Birlikte Çöktürme Yöntemi ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik ve Optik Özellikleri. Journal of the Institute of Science and Technology 13 2 1013–1025.
IEEE S. Kayar, N. Erat, ve A. Özer, “Birlikte Çöktürme Yöntemi ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik ve Optik Özellikleri”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 2, ss. 1013–1025, 2023, doi: 10.21597/jist.1243756.
ISNAD Kayar, Sinem vd. “Birlikte Çöktürme Yöntemi Ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik Ve Optik Özellikleri”. Journal of the Institute of Science and Technology 13/2 (Haziran 2023), 1013-1025. https://doi.org/10.21597/jist.1243756.
JAMA Kayar S, Erat N, Özer A. Birlikte Çöktürme Yöntemi ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik ve Optik Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1013–1025.
MLA Kayar, Sinem vd. “Birlikte Çöktürme Yöntemi Ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik Ve Optik Özellikleri”. Journal of the Institute of Science and Technology, c. 13, sy. 2, 2023, ss. 1013-25, doi:10.21597/jist.1243756.
Vancouver Kayar S, Erat N, Özer A. Birlikte Çöktürme Yöntemi ile Sentezlenen Zn0.95-xCu0.05CoxO’nun Yapısal, Morfolojik ve Optik Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(2):1013-25.