Araştırma Makalesi
BibTex RIS Kaynak Göster

Global Existence in a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism

Yıl 2024, Cilt: 14 Sayı: 4, 1705 - 1716, 01.12.2024
https://doi.org/10.21597/jist.1550265

Öz

One of the fundamental processes in ecology is the interaction between predator and prey. Predator-prey interactions refer to the relative changes in population density of two species as they share the same environment and one species preys on the other. There are many studies global existence or blow-up of solutions on the predator-prey model. Our this paper related to the predator-prey model with nonlinear indirect chemotaxis mechanism under homogeneous Neumann boundary conditions. We establish the global existence and boundedness of classical solutions of our problem by using parabolic regularity theory. Namely, firstly we show that u and υ boundedness in L^p for some p>1, then we obtain the L^∞-bound of u and υ by using Alikakos-Moser iteration. Thus, it is proved that the model has a unique global classical solution under suitable conditions on the parameters in a smooth bounded domain.

Kaynakça

  • Adler, J. (1966). Chemotaxis in Bacteria: Motile Escherichia coli migrate in bands that are influenced by oxygen and organic nutrients. Science, 153(3737), 708-716.
  • Agmon, S., Douglis, A., & Nirenberg, L. (1964). Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Communications on Pure and Applied Mathematics, 17(1), 35-92.
  • Alikakos, N. D. (1979). L^p bounds of solutions of reaction-diffusion equations. Communications in Partial Differential Equations, 4(8), 827-868.
  • Ayazoglu, R. (2022). Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with variable logistic source. Journal of Mathematical Analysis and Applications, 516(1), 126482.
  • Ayazoglu, R., & Akkoyunlu, E. (2022). Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with variable logistic source. Zeitschrift für Angewandte Mathematik und Physik, 73(5), 212.
  • Ayazoglu, R., Kadakal, M., & Akkoyunlu, E. (2024). Dynamics in a parabolic-elliptic chemotaxis system with logistic source involving exponents depending on the spatial variables. Discrete and Continuous Dynamical Systems-B, 29(5), 2110-2122.
  • Ayazoglu, R., & Salmanova, K. A. (2024). Global attractors in a two-species chemotaxis system with two chemicals and variable logistic sources. Transactions Issue Mathematics, Azerbaijan National Academy of Sciences, 44(1), 20-30.
  • Bai, X., & Winkler, M. (2016). Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana University Mathematics Journal, 65(2), 553-583.
  • Biler, P., Espejo, E. E., & Guerra, I. (2013). Blowup in higher dimensional two species chemotactic systems. Communications on Pure & Applied Analysis, 12(1), 89-98.
  • Cao, X., & Zheng, S. (2014). Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source. Mathematical Methods in the Applied Sciences, 37(15), 2326-2330.
  • Conca, C., Espejo, E., & Vilches, K. (2011). Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in ℝ². European Journal of Applied Mathematics, 22(6), 553-580.
  • Ding, M., & Wang, W. (2019). Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems-Series B, 24(9), 4665-4684.
  • Espejo, E. E., Stevens, A., & Velázquez, J. J. (2009). Simultaneous finite time blow-up in a two-species model for chemotaxis. Analysis, 29, 317-338.
  • Espejo, E., Vilches, K., & Conca, C. (2013). Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in ℝ². European Journal of Applied Mathematics, 24(2), 297-313.
  • Horstmann, D. (2004). From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II. Jahresbericht der Deutschen Mathematiker-Vereinigung, 106(2), 51-69.
  • Horstmann, D., & Wang, G. (2001). Blow-up in a chemotaxis model without symmetry assumptions. European Journal of Applied Mathematics, 12(2), 159-177.
  • Keller, E. F., & Segel, L. A. (1971). Model for chemotaxis. Journal of Theoretical Biology, 30(2), 225-234.
  • Ladyzhenskaia, O. A., Solonnikov, V. A., & Ural'tseva, N. N. (1968). Linear and quasi-linear equations of parabolic type. Translations of Mathematical Monographs (Vol. 23). American Mathematical Society.
  • Li, X., & Wang, Y. (2019). On a fully parabolic chemotaxis system with Lotka-Volterra competitive kinetics. Journal of Mathematical Analysis and Applications, 471(1-2), 584-598.
  • Li, X., & Xiang, Z. (2016). On an attraction-repulsion chemotaxis system with a logistic source. IMA Journal of Applied Mathematics, 81(1), 165-198.
  • Lin, K., & Mu, C. (2017). Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete & Continuous Dynamical Systems-Series B, 22(6), 2233-2260.
  • Lin, K., Mu, C., & Wang, L. (2015). Boundedness in a two‐species chemotaxis system. Mathematical Methods in the Applied Sciences, 38(18), 5085-5096.
  • Liu, A., & Dai, B. (2022). Boundedness of solutions in a fully parabolic quasilinear chemotaxis model with two species and two chemicals. Taiwanese Journal of Mathematics, 26(2), 285-315.
  • Mizukami, M. (2017). Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems-Series B, 22(6), 2301-2319.
  • Nagai, T. (2001). Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. Journal of Inequalities and Applications, 6(1), 37-55.
  • Nirenberg, L. (1966). An extended interpolation inequality. Annali della Scuola Normale Superiore di Pisa-Scienze Fisiche e Matematiche, 20(4), 733-737.
  • Osaki, K., & Yagi, A. (2001). Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcialaj ekvacioj serio internacia, 44(3), 441-470.
  • Osaki, K., Tsujikawa, T., Yagi, A., & Mimura, M. (2002). Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Analysis: Theory, Methods & Applications, 51(1), 119-144.
  • Tang, H., Zheng, J., & Li, K. (2023). Global bounded classical solution for an attraction-repulsion chemotaxis system. Applied Mathematics Letters, 138, 108532.
  • Tao, Y., & Wang, Z. A. (2013). Competing effects of attraction vs. repulsion in chemotaxis. Mathematical Models and Methods in Applied Sciences, 23(01), 1-36.
  • Tello, J. I., & Winkler, M. (2007). A chemotaxis system with logistic source. Communications in Partial Differential Equations, 32(6), 849-877.
  • Tello, J. I., & Winkler, M. (2012). Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity, 25(5), 1413-1425.
  • Tian, M., He, X., & Zheng, S. (2022). Global attractors in a two-species chemotaxis system with two chemicals and logistic sources. Journal of Mathematical Analysis and Applications, 508(1), 125861.
  • Volterra, V. (1926). Variazione e fluttuazione del numero d'individui in specie animali conviventi. Memoria Della Reale Academia Nazionale Dei Lincei, 6(2), 31-113.
  • Wang, Q., Yang, J., & Zhang, L. (2017). Time periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: effect of cellular growth. Discrete and Continuous Dynamical Systems-Series B, 22(9), 3547-3574.
  • Wang, C. J., & Ke, C. H. (2024). Global classical solutions to a predator-prey model with nonlinear indirect chemotaxis mechanism. Acta Applicandae Mathematicae, 190(1), 1-14.
  • Winkler, M. (2010). Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Communications in Partial Differential Equations, 35(8), 1516-1537.
  • Winkler, M. (2013). Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. Journal de Mathématiques Pures et Appliquées, 100(5), 748-767.
  • Xu, P., & Zheng, S. (2018). Global boundedness in an attraction-repulsion chemotaxis system with logistic source. Applied Mathematics Letters, 83, 1-6.
  • Yang, C., Cao, X., Jiang, Z., & Zheng, S. (2015). Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source. Journal of Mathematical Analysis and Applications, 430(1), 585-591.
  • Zhang, Q., & Li, Y. (2018). Global solutions in a high-dimensional two-species chemotaxis model with Lotka-Volterra competitive kinetics. Journal of Mathematical Analysis and Applications, 467(1), 751-767.
Yıl 2024, Cilt: 14 Sayı: 4, 1705 - 1716, 01.12.2024
https://doi.org/10.21597/jist.1550265

Öz

Kaynakça

  • Adler, J. (1966). Chemotaxis in Bacteria: Motile Escherichia coli migrate in bands that are influenced by oxygen and organic nutrients. Science, 153(3737), 708-716.
  • Agmon, S., Douglis, A., & Nirenberg, L. (1964). Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Communications on Pure and Applied Mathematics, 17(1), 35-92.
  • Alikakos, N. D. (1979). L^p bounds of solutions of reaction-diffusion equations. Communications in Partial Differential Equations, 4(8), 827-868.
  • Ayazoglu, R. (2022). Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with variable logistic source. Journal of Mathematical Analysis and Applications, 516(1), 126482.
  • Ayazoglu, R., & Akkoyunlu, E. (2022). Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with variable logistic source. Zeitschrift für Angewandte Mathematik und Physik, 73(5), 212.
  • Ayazoglu, R., Kadakal, M., & Akkoyunlu, E. (2024). Dynamics in a parabolic-elliptic chemotaxis system with logistic source involving exponents depending on the spatial variables. Discrete and Continuous Dynamical Systems-B, 29(5), 2110-2122.
  • Ayazoglu, R., & Salmanova, K. A. (2024). Global attractors in a two-species chemotaxis system with two chemicals and variable logistic sources. Transactions Issue Mathematics, Azerbaijan National Academy of Sciences, 44(1), 20-30.
  • Bai, X., & Winkler, M. (2016). Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana University Mathematics Journal, 65(2), 553-583.
  • Biler, P., Espejo, E. E., & Guerra, I. (2013). Blowup in higher dimensional two species chemotactic systems. Communications on Pure & Applied Analysis, 12(1), 89-98.
  • Cao, X., & Zheng, S. (2014). Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source. Mathematical Methods in the Applied Sciences, 37(15), 2326-2330.
  • Conca, C., Espejo, E., & Vilches, K. (2011). Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in ℝ². European Journal of Applied Mathematics, 22(6), 553-580.
  • Ding, M., & Wang, W. (2019). Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems-Series B, 24(9), 4665-4684.
  • Espejo, E. E., Stevens, A., & Velázquez, J. J. (2009). Simultaneous finite time blow-up in a two-species model for chemotaxis. Analysis, 29, 317-338.
  • Espejo, E., Vilches, K., & Conca, C. (2013). Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in ℝ². European Journal of Applied Mathematics, 24(2), 297-313.
  • Horstmann, D. (2004). From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II. Jahresbericht der Deutschen Mathematiker-Vereinigung, 106(2), 51-69.
  • Horstmann, D., & Wang, G. (2001). Blow-up in a chemotaxis model without symmetry assumptions. European Journal of Applied Mathematics, 12(2), 159-177.
  • Keller, E. F., & Segel, L. A. (1971). Model for chemotaxis. Journal of Theoretical Biology, 30(2), 225-234.
  • Ladyzhenskaia, O. A., Solonnikov, V. A., & Ural'tseva, N. N. (1968). Linear and quasi-linear equations of parabolic type. Translations of Mathematical Monographs (Vol. 23). American Mathematical Society.
  • Li, X., & Wang, Y. (2019). On a fully parabolic chemotaxis system with Lotka-Volterra competitive kinetics. Journal of Mathematical Analysis and Applications, 471(1-2), 584-598.
  • Li, X., & Xiang, Z. (2016). On an attraction-repulsion chemotaxis system with a logistic source. IMA Journal of Applied Mathematics, 81(1), 165-198.
  • Lin, K., & Mu, C. (2017). Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete & Continuous Dynamical Systems-Series B, 22(6), 2233-2260.
  • Lin, K., Mu, C., & Wang, L. (2015). Boundedness in a two‐species chemotaxis system. Mathematical Methods in the Applied Sciences, 38(18), 5085-5096.
  • Liu, A., & Dai, B. (2022). Boundedness of solutions in a fully parabolic quasilinear chemotaxis model with two species and two chemicals. Taiwanese Journal of Mathematics, 26(2), 285-315.
  • Mizukami, M. (2017). Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems-Series B, 22(6), 2301-2319.
  • Nagai, T. (2001). Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. Journal of Inequalities and Applications, 6(1), 37-55.
  • Nirenberg, L. (1966). An extended interpolation inequality. Annali della Scuola Normale Superiore di Pisa-Scienze Fisiche e Matematiche, 20(4), 733-737.
  • Osaki, K., & Yagi, A. (2001). Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcialaj ekvacioj serio internacia, 44(3), 441-470.
  • Osaki, K., Tsujikawa, T., Yagi, A., & Mimura, M. (2002). Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Analysis: Theory, Methods & Applications, 51(1), 119-144.
  • Tang, H., Zheng, J., & Li, K. (2023). Global bounded classical solution for an attraction-repulsion chemotaxis system. Applied Mathematics Letters, 138, 108532.
  • Tao, Y., & Wang, Z. A. (2013). Competing effects of attraction vs. repulsion in chemotaxis. Mathematical Models and Methods in Applied Sciences, 23(01), 1-36.
  • Tello, J. I., & Winkler, M. (2007). A chemotaxis system with logistic source. Communications in Partial Differential Equations, 32(6), 849-877.
  • Tello, J. I., & Winkler, M. (2012). Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity, 25(5), 1413-1425.
  • Tian, M., He, X., & Zheng, S. (2022). Global attractors in a two-species chemotaxis system with two chemicals and logistic sources. Journal of Mathematical Analysis and Applications, 508(1), 125861.
  • Volterra, V. (1926). Variazione e fluttuazione del numero d'individui in specie animali conviventi. Memoria Della Reale Academia Nazionale Dei Lincei, 6(2), 31-113.
  • Wang, Q., Yang, J., & Zhang, L. (2017). Time periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: effect of cellular growth. Discrete and Continuous Dynamical Systems-Series B, 22(9), 3547-3574.
  • Wang, C. J., & Ke, C. H. (2024). Global classical solutions to a predator-prey model with nonlinear indirect chemotaxis mechanism. Acta Applicandae Mathematicae, 190(1), 1-14.
  • Winkler, M. (2010). Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Communications in Partial Differential Equations, 35(8), 1516-1537.
  • Winkler, M. (2013). Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. Journal de Mathématiques Pures et Appliquées, 100(5), 748-767.
  • Xu, P., & Zheng, S. (2018). Global boundedness in an attraction-repulsion chemotaxis system with logistic source. Applied Mathematics Letters, 83, 1-6.
  • Yang, C., Cao, X., Jiang, Z., & Zheng, S. (2015). Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source. Journal of Mathematical Analysis and Applications, 430(1), 585-591.
  • Zhang, Q., & Li, Y. (2018). Global solutions in a high-dimensional two-species chemotaxis model with Lotka-Volterra competitive kinetics. Journal of Mathematical Analysis and Applications, 467(1), 751-767.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kısmi Diferansiyel Denklemler
Bölüm Matematik / Mathematics
Yazarlar

Ebubekir Akkoyunlu 0000-0003-2989-4151

Yayımlanma Tarihi 1 Aralık 2024
Gönderilme Tarihi 15 Eylül 2024
Kabul Tarihi 7 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Akkoyunlu, E. (2024). Global Existence in a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism. Journal of the Institute of Science and Technology, 14(4), 1705-1716. https://doi.org/10.21597/jist.1550265
AMA Akkoyunlu E. Global Existence in a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2024;14(4):1705-1716. doi:10.21597/jist.1550265
Chicago Akkoyunlu, Ebubekir. “Global Existence in a Predator-Prey Model With Nonlinear Indirect Chemotaxis Mechanism”. Journal of the Institute of Science and Technology 14, sy. 4 (Aralık 2024): 1705-16. https://doi.org/10.21597/jist.1550265.
EndNote Akkoyunlu E (01 Aralık 2024) Global Existence in a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism. Journal of the Institute of Science and Technology 14 4 1705–1716.
IEEE E. Akkoyunlu, “Global Existence in a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 4, ss. 1705–1716, 2024, doi: 10.21597/jist.1550265.
ISNAD Akkoyunlu, Ebubekir. “Global Existence in a Predator-Prey Model With Nonlinear Indirect Chemotaxis Mechanism”. Journal of the Institute of Science and Technology 14/4 (Aralık 2024), 1705-1716. https://doi.org/10.21597/jist.1550265.
JAMA Akkoyunlu E. Global Existence in a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1705–1716.
MLA Akkoyunlu, Ebubekir. “Global Existence in a Predator-Prey Model With Nonlinear Indirect Chemotaxis Mechanism”. Journal of the Institute of Science and Technology, c. 14, sy. 4, 2024, ss. 1705-16, doi:10.21597/jist.1550265.
Vancouver Akkoyunlu E. Global Existence in a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(4):1705-16.