Araştırma Makalesi
BibTex RIS Kaynak Göster

Edge Co-Even Domination

Yıl 2025, Cilt: 15 Sayı: 1, 291 - 297, 01.03.2025
https://doi.org/10.21597/jist.1460711

Öz

Domination is one of those important parameters in graph theory which has a very wide range of applications. There are various types of domination depending on the structure of dominating sets. In this study, a new domination parameter called edge co-even domination number is introduced and denoted by γ_coe^' (G). Some basic graphs such as path, cycle, complete, complete bipartite, star, regular, wheel and their complement graphs are examined of this definition. In addition, some results of this parameter are found under graph operations, such as corona and cartesian product.

Kaynakça

  • Bondy, J.A., Murty, U.S.R (1976). Graph Theory with Applications. New York.
  • Buckley, F., Harary, F. (1990). Distance in Graphs. Addison-Wesley Publishing Company.
  • Demirpolat, N.Ç., Kılıç, E., (2021). Co-Even Domination Number of Some Path Related Graphs, Journal of Modern Technology and Engineering, Vol. 6, No. 2, pp. 143-150.
  • Erdös, P., Rényi, A. & Sós,V.T., (1996). On a problem of graph theory, Studia Sci. Math. Hungar., 1, 215–235.
  • Hedetniemi, S.T., Haynes, T.W. & Slater, P.J. (1998). Fundamentals of Domination in Graphs. Marcel Dekker Inc.
  • Imran, S. A., & Omran, A. A. (2022, January). Total co-even domination in graphs in some of engineering project theoretically. In AIP Conference Proceedings (Vol. 2386, No. 1). AIP Publishing.
  • Klavžar, S., Imrich, W., Rall, D.F. (2008). Topics in Graph Theory: Graphs and Their Cartesian Product. A K Peters/CRC Press.
  • Mitchell, S., Hedetniemi, S.T. (1977). Edge domination in trees. Congr. Numer., 19, 489-509.
  • Omran, A.A., Shalaan, M. M., (2020). Co-Even Domination in Graphs, International Journal of Control and Automation, Vol. 13, No. 3, pp. 330-334.
  • Omran, A. A., & Shalaan, M. M. (2020, November). Inverse co-even domination of graphs. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 4, p. 042025). IOP Publishing.
  • Omran, A.A, & Ibrahim, T. (2021). Fuzzy co-even domination of strong fuzzy graphs. International Journal of Nonlinear Analysis and Applications, 12(1), 726-734.
Yıl 2025, Cilt: 15 Sayı: 1, 291 - 297, 01.03.2025
https://doi.org/10.21597/jist.1460711

Öz

Kaynakça

  • Bondy, J.A., Murty, U.S.R (1976). Graph Theory with Applications. New York.
  • Buckley, F., Harary, F. (1990). Distance in Graphs. Addison-Wesley Publishing Company.
  • Demirpolat, N.Ç., Kılıç, E., (2021). Co-Even Domination Number of Some Path Related Graphs, Journal of Modern Technology and Engineering, Vol. 6, No. 2, pp. 143-150.
  • Erdös, P., Rényi, A. & Sós,V.T., (1996). On a problem of graph theory, Studia Sci. Math. Hungar., 1, 215–235.
  • Hedetniemi, S.T., Haynes, T.W. & Slater, P.J. (1998). Fundamentals of Domination in Graphs. Marcel Dekker Inc.
  • Imran, S. A., & Omran, A. A. (2022, January). Total co-even domination in graphs in some of engineering project theoretically. In AIP Conference Proceedings (Vol. 2386, No. 1). AIP Publishing.
  • Klavžar, S., Imrich, W., Rall, D.F. (2008). Topics in Graph Theory: Graphs and Their Cartesian Product. A K Peters/CRC Press.
  • Mitchell, S., Hedetniemi, S.T. (1977). Edge domination in trees. Congr. Numer., 19, 489-509.
  • Omran, A.A., Shalaan, M. M., (2020). Co-Even Domination in Graphs, International Journal of Control and Automation, Vol. 13, No. 3, pp. 330-334.
  • Omran, A. A., & Shalaan, M. M. (2020, November). Inverse co-even domination of graphs. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 4, p. 042025). IOP Publishing.
  • Omran, A.A, & Ibrahim, T. (2021). Fuzzy co-even domination of strong fuzzy graphs. International Journal of Nonlinear Analysis and Applications, 12(1), 726-734.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Matematik / Mathematics
Yazarlar

Nazlıcan Çağla Demirpolat 0000-0002-3137-4422

Elgin Kılıç 0000-0002-1074-5589

Ahmed Omran 0000-0002-8362-530X

Erken Görünüm Tarihi 20 Şubat 2025
Yayımlanma Tarihi 1 Mart 2025
Gönderilme Tarihi 11 Mayıs 2024
Kabul Tarihi 7 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Demirpolat, N. Ç., Kılıç, E., & Omran, A. (2025). Edge Co-Even Domination. Journal of the Institute of Science and Technology, 15(1), 291-297. https://doi.org/10.21597/jist.1460711
AMA Demirpolat NÇ, Kılıç E, Omran A. Edge Co-Even Domination. Iğdır Üniv. Fen Bil Enst. Der. Mart 2025;15(1):291-297. doi:10.21597/jist.1460711
Chicago Demirpolat, Nazlıcan Çağla, Elgin Kılıç, ve Ahmed Omran. “Edge Co-Even Domination”. Journal of the Institute of Science and Technology 15, sy. 1 (Mart 2025): 291-97. https://doi.org/10.21597/jist.1460711.
EndNote Demirpolat NÇ, Kılıç E, Omran A (01 Mart 2025) Edge Co-Even Domination. Journal of the Institute of Science and Technology 15 1 291–297.
IEEE N. Ç. Demirpolat, E. Kılıç, ve A. Omran, “Edge Co-Even Domination”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 1, ss. 291–297, 2025, doi: 10.21597/jist.1460711.
ISNAD Demirpolat, Nazlıcan Çağla vd. “Edge Co-Even Domination”. Journal of the Institute of Science and Technology 15/1 (Mart 2025), 291-297. https://doi.org/10.21597/jist.1460711.
JAMA Demirpolat NÇ, Kılıç E, Omran A. Edge Co-Even Domination. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:291–297.
MLA Demirpolat, Nazlıcan Çağla vd. “Edge Co-Even Domination”. Journal of the Institute of Science and Technology, c. 15, sy. 1, 2025, ss. 291-7, doi:10.21597/jist.1460711.
Vancouver Demirpolat NÇ, Kılıç E, Omran A. Edge Co-Even Domination. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(1):291-7.