Araştırma Makalesi
BibTex RIS Kaynak Göster

Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma

Yıl 2025, Cilt: 15 Sayı: 3, 744 - 754, 01.09.2025
https://doi.org/10.21597/jist.1569294

Öz

Bu çalışma, trafik ağlarının etkin yönetimi ve optimizasyonu için önemli bir problem olan Kritik Kenar Problemine odaklanmaktadır. Kritik Kenar Problemi, ağdan çıkarılması ile ağın bağlantısallığına en çok zarar verecek kenar kümesini belirlemeyi amaçlayan bir optimizasyon problemidir. Kritik Kenar Problemi trafik yönetimi, acil durum müdahaleleri, altyapı yatırımları ve ağ dayanıklılığını artırma gibi çok sayıda önemli uygulama alanına sahiptir. Bu çalışmanın temel motivasyonu özellikle büyük ölçekli gerçek hayat ağları üzerinde verimli bir şekilde kullanılabilecek yeni bir polinom zamanlı algoritmanın geliştirilmesidir. Geliştirilen algoritmanın efektifliği küçük ölçekli ağlar üzerinde klasik kaba-kuvvet yaklaşımıyla elde edilen optimal sonuçlarla karşılaştırılarak test edilmiştir. Önerilen yöntem, trafik sıkışıklığını azaltma, seyahat sürelerini kısaltma ve çevresel etkileri minimize etme gibi çeşitli kentsel zorluklarla başa çıkma potansiyeli taşımaktadır. Bu araştırma, büyük ölçekli trafik ağlarının anlaşılmasını ve verimli ulaşım sistemlerinin geliştirilmesini teşvik etmek için etkin bir yaklaşım sunmaktadır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

121F092

Kaynakça

  • Bazgan, C., Toubaline, S., & Vanderpooten, D. (2013). Critical edges for the assignment problem: Complexity and exact resolution. Operations Research Letters, 41(6), 685-689.
  • Brinkmeier, M. (2007). A simple and fast min-cut algorithm. Theory of Computing Systems, 41(2), 369-380.
  • Diestel, R. (2012). Graph theory (4th ed.). Graduate Texts in Mathematics. Springer.
  • Dinh, T.N., & Thai, M.T. (2011). Precise structural vulnerability assessment via mathematical programming. In Military Communications Conference, 2011-MILCOM 2011, IEEE (pp. 1351–1356).
  • Eren, T., & Akdaş, E. (2023). Afet ve acil durum yönetiminde arama kurtarma ekiplerinin oluşturulması. Afet ve risk dergisi, 6(3), 1060-1073.
  • Gauthier, P., Furno, A., & El Faouzi, N. E. (2018). Road network resilience: how to identify critical links subject to day-to-day disruptions. Transportation research record, 2672(1), 54-65.
  • Grubesic, T.H., Matisziw, T.C., Murray, A.T., & Snediker, D. (2008). Comparative approaches for assessing network vulnerability. International Regional Science Review, 31(1), 88–112.
  • Houck, D.J., Kim, E., O'Reilly, G.P., Picklesimer, D.D., & Uzunalioglu, H. (2004). A network survivability model for critical national infrastructures. Bell Labs Technical Journal, 8(4), 153–172.
  • Jenelius, E., Petersen, T., & Mattsson, L.G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice, 40(7), 537–560.
  • Jilani, U., Asif, M., Zia, M. Y. I., Rashid, M., Shams, S., & Otero, P. (2023). A systematic review on urban road traffic congestion. Wireless Personal Communications, 1-29.
  • Karimi, H., Ghadirifaraz, B., Shetab Boushehri, S. N., Hosseininasab, S. M., & Rafiei, N. (2021). Reducing traffic congestion and increasing sustainability in special urban areas through one-way traffic reconfiguration. Transportation, 1-24.
  • Lalou, M., Tahraoui, M.A., & Kheddouci, H. (2018). The critical node detection problem in networks: A survey. Computer Science Review, 28, 92-117.
  • Minh, Q. T., Le Hoang, H. N., & Nhat, M. N. (2022). Effective traffic routing for urban transportation capacity and safety enhancement. IATSS Research, 46(4), 574-585.
  • Nagamochi, H., Ono, T., & Ibaraki, T. (1994). Implementing an efficient minimum capacity cut algorithm. Mathematical Programming, 67, 325–341.
  • Pana-Micu, F. (2024). Graph theory algorithms in optimizing urban infrastructure in smart cities. In Proceedings of the Central and Eastern European eDem and eGov Days 2024 (pp. 125-129).
  • Rashmi, R., Champawat, S., Varun Teja, G., & Lavanya, K. (2020). Analysis of road networks using the louvian community detection algorithm. In Soft Computing for Problem Solving: SocProS 2018, Volume 2 (pp. 749-757). Springer Singapore.
  • Salmeron, J., Wood, K.R., & Baldick, R. (2004). Analysis of electric grid security under terrorist threat. IEEE Transactions on Power Systems, 19(2), 905–912.
  • Smith, J.C., Prince, M., & Geunes, J. (2013). Modern network interdiction problems and algorithms. In Handbook of combinatorial optimization (pp. 1949-1987).
  • Smith, J.C., & Song, Y. (2019). A survey of network interdiction models and algorithms. European Journal of Operational Research, 283(3), 797-811.
  • Stoer, M., & Wagner, F. (1997). A simple min-cut algorithm. Journal of the ACM, 44(4), 585–591.
  • Tekgöz, H., Kolukısa, N., & Karabatak, M. (2022). Trafik Işıklarının Optimum Planlaması için Çizge Tabanlı Çözüm Önerisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 15-23.
  • Walteros, J.L., & Pardalos, P.M. (2012). Selected topics in critical element detection. In Applications of mathematics and informatics in military science (pp. 9-26).
  • Yu, E. Y., Chen, D. B., & Zhao, J. Y. (2018). Identifying critical edges in complex networks. Scientific reports, 8(1), 14469.

An Effective Algorithm for Critical Edge Detection in Urban Road Networks

Yıl 2025, Cilt: 15 Sayı: 3, 744 - 754, 01.09.2025
https://doi.org/10.21597/jist.1569294

Öz

This study focuses on the Critical Edge Problem, which is an important problem for effectively managing and optimizing traffic networks. The Critical Edge Problem is an optimization problem that aims to determine the set of edges whose removal from the network will cause the most damage to the network's connectivity. The Critical Edge Problem has many important application areas, such as traffic management, emergency responses, infrastructure investments, and increasing network resilience. The primary motivation of this study is the development of a new polynomial-time algorithm that can be used efficiently, especially on large-scale real-life networks. The effectiveness of the developed algorithm was tested by comparing it with the optimal results obtained by classical brute-force approaches on small-scale networks, and the theoretical foundations and practical applications of the algorithm were comprehensively examined. The proposed method has the potential to tackle various urban challenges, such as reducing traffic congestion, shortening travel times, and minimizing environmental impacts. This research provides an effective method to promote the understanding of large-scale traffic networks and the development of efficient transportation systems.

Destekleyen Kurum

TUBITAK

Proje Numarası

121F092

Kaynakça

  • Bazgan, C., Toubaline, S., & Vanderpooten, D. (2013). Critical edges for the assignment problem: Complexity and exact resolution. Operations Research Letters, 41(6), 685-689.
  • Brinkmeier, M. (2007). A simple and fast min-cut algorithm. Theory of Computing Systems, 41(2), 369-380.
  • Diestel, R. (2012). Graph theory (4th ed.). Graduate Texts in Mathematics. Springer.
  • Dinh, T.N., & Thai, M.T. (2011). Precise structural vulnerability assessment via mathematical programming. In Military Communications Conference, 2011-MILCOM 2011, IEEE (pp. 1351–1356).
  • Eren, T., & Akdaş, E. (2023). Afet ve acil durum yönetiminde arama kurtarma ekiplerinin oluşturulması. Afet ve risk dergisi, 6(3), 1060-1073.
  • Gauthier, P., Furno, A., & El Faouzi, N. E. (2018). Road network resilience: how to identify critical links subject to day-to-day disruptions. Transportation research record, 2672(1), 54-65.
  • Grubesic, T.H., Matisziw, T.C., Murray, A.T., & Snediker, D. (2008). Comparative approaches for assessing network vulnerability. International Regional Science Review, 31(1), 88–112.
  • Houck, D.J., Kim, E., O'Reilly, G.P., Picklesimer, D.D., & Uzunalioglu, H. (2004). A network survivability model for critical national infrastructures. Bell Labs Technical Journal, 8(4), 153–172.
  • Jenelius, E., Petersen, T., & Mattsson, L.G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice, 40(7), 537–560.
  • Jilani, U., Asif, M., Zia, M. Y. I., Rashid, M., Shams, S., & Otero, P. (2023). A systematic review on urban road traffic congestion. Wireless Personal Communications, 1-29.
  • Karimi, H., Ghadirifaraz, B., Shetab Boushehri, S. N., Hosseininasab, S. M., & Rafiei, N. (2021). Reducing traffic congestion and increasing sustainability in special urban areas through one-way traffic reconfiguration. Transportation, 1-24.
  • Lalou, M., Tahraoui, M.A., & Kheddouci, H. (2018). The critical node detection problem in networks: A survey. Computer Science Review, 28, 92-117.
  • Minh, Q. T., Le Hoang, H. N., & Nhat, M. N. (2022). Effective traffic routing for urban transportation capacity and safety enhancement. IATSS Research, 46(4), 574-585.
  • Nagamochi, H., Ono, T., & Ibaraki, T. (1994). Implementing an efficient minimum capacity cut algorithm. Mathematical Programming, 67, 325–341.
  • Pana-Micu, F. (2024). Graph theory algorithms in optimizing urban infrastructure in smart cities. In Proceedings of the Central and Eastern European eDem and eGov Days 2024 (pp. 125-129).
  • Rashmi, R., Champawat, S., Varun Teja, G., & Lavanya, K. (2020). Analysis of road networks using the louvian community detection algorithm. In Soft Computing for Problem Solving: SocProS 2018, Volume 2 (pp. 749-757). Springer Singapore.
  • Salmeron, J., Wood, K.R., & Baldick, R. (2004). Analysis of electric grid security under terrorist threat. IEEE Transactions on Power Systems, 19(2), 905–912.
  • Smith, J.C., Prince, M., & Geunes, J. (2013). Modern network interdiction problems and algorithms. In Handbook of combinatorial optimization (pp. 1949-1987).
  • Smith, J.C., & Song, Y. (2019). A survey of network interdiction models and algorithms. European Journal of Operational Research, 283(3), 797-811.
  • Stoer, M., & Wagner, F. (1997). A simple min-cut algorithm. Journal of the ACM, 44(4), 585–591.
  • Tekgöz, H., Kolukısa, N., & Karabatak, M. (2022). Trafik Işıklarının Optimum Planlaması için Çizge Tabanlı Çözüm Önerisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 15-23.
  • Walteros, J.L., & Pardalos, P.M. (2012). Selected topics in critical element detection. In Applications of mathematics and informatics in military science (pp. 9-26).
  • Yu, E. Y., Chen, D. B., & Zhao, J. Y. (2018). Identifying critical edges in complex networks. Scientific reports, 8(1), 14469.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yazılım Mühendisliği (Diğer)
Bölüm Bilgisayar Mühendisliği / Computer Engineering
Yazarlar

Yeşim Aygül 0000-0003-0605-9604

Onur Uğurlu 0000-0003-2743-5939

Vahid Akram 0000-0002-4082-6419

Deniz Türsel Eliiyi 0000-0001-7693-3980

Proje Numarası 121F092
Erken Görünüm Tarihi 31 Ağustos 2025
Yayımlanma Tarihi 1 Eylül 2025
Gönderilme Tarihi 21 Ekim 2024
Kabul Tarihi 17 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Aygül, Y., Uğurlu, O., Akram, V., Türsel Eliiyi, D. (2025). Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma. Journal of the Institute of Science and Technology, 15(3), 744-754. https://doi.org/10.21597/jist.1569294
AMA Aygül Y, Uğurlu O, Akram V, Türsel Eliiyi D. Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2025;15(3):744-754. doi:10.21597/jist.1569294
Chicago Aygül, Yeşim, Onur Uğurlu, Vahid Akram, ve Deniz Türsel Eliiyi. “Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma”. Journal of the Institute of Science and Technology 15, sy. 3 (Eylül 2025): 744-54. https://doi.org/10.21597/jist.1569294.
EndNote Aygül Y, Uğurlu O, Akram V, Türsel Eliiyi D (01 Eylül 2025) Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma. Journal of the Institute of Science and Technology 15 3 744–754.
IEEE Y. Aygül, O. Uğurlu, V. Akram, ve D. Türsel Eliiyi, “Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 3, ss. 744–754, 2025, doi: 10.21597/jist.1569294.
ISNAD Aygül, Yeşim vd. “Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma”. Journal of the Institute of Science and Technology 15/3 (Eylül2025), 744-754. https://doi.org/10.21597/jist.1569294.
JAMA Aygül Y, Uğurlu O, Akram V, Türsel Eliiyi D. Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:744–754.
MLA Aygül, Yeşim vd. “Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma”. Journal of the Institute of Science and Technology, c. 15, sy. 3, 2025, ss. 744-5, doi:10.21597/jist.1569294.
Vancouver Aygül Y, Uğurlu O, Akram V, Türsel Eliiyi D. Kentsel Yol Ağlarında Kritik Kenar Tespiti için Etkin Bir Algoritma. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(3):744-5.