Araştırma Makalesi
BibTex RIS Kaynak Göster

On The Some Special Biquadratic Bezier Surfaces in E^3

Yıl 2025, Cilt: 15 Sayı: 3, 1110 - 1123, 01.09.2025
https://doi.org/10.21597/jist.1643500

Öz

In this study, biquadratic Bezier surfaces were investigated. These surfaces have a very important place in the scientific world. The importance of biquadratic Bézier surfaces lies in their ability to provide a smooth, flexible, and computationally efficient method for modeling surfaces. They fill the gap between simpler bilinear surfaces and more complex bicubic surfaces, offering a great solution in areas where both simplicity and precision are needed. While not as commonly used in high-end 3D modeling as their higher-order counterparts, they remain a useful tool for surface design, particularly when the trade-off between quality and computational efficiency is critical. In this study, firstly the matrix representations of biquadratic Bezier surfaces are given. Then, it is stated how to find the control points of some special surface types given as biquadratic Bezier surfaces, and the control points of parabolic cylinder, elliptic paraboloid and hyperbolic paraboloid surfaces are calculated.

Kaynakça

  • Anonymous. 2013. Practical Guide to Bezier Surfaces. URL: https://www.gamedev.net/tutorials/programming/math-and-physics/practical-guide-to-bezier-surfaces-r3170/.
  • Farin, G. (2002). Curves and Surfaces for CAGD. (5th ed.). Academic Press.
  • Hagen, H. (1986). Bezier-curves with curvature and torsion continuity. Rocky Mountain J. Math., 16(3), 629-638.
  • Han, Xi-An, YiChen Ma, & XiLi Huang. (2008). A novel generalization of Bézier curve and surface. Journal of Computational and Applied Mathematics, 217(1), 180-193.
  • Hu, Gang, Junli Wu, & Xinqiang Qin. (2018). A new approach in designing of local controlled developable H-Bézier surfaces. Advances in Engineering Software, 121, 26-38.
  • Kılıçoğlu, Ş. & Şenyurt, S. (2022). On the Matrix Representation of 5th order Bézier Curve and derivatives in E³. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistic, 71(1), 133-152.
  • Kılıçoğlu, Ş. (2023). On Approximation of Helix by 3rd, 5th and 7th Order Bézier curves in E³. Thermal Science, 26(2), 525-538.
  • Kılıçoğlu, Ş. (2023). On approximation sine wave with the 5^{th} and 7^{th} order Bézier paths in E². Thermal Science, 26(2), 539-550.
  • Kılıçoğlu, Ş. & Yurttançıkmaz S. (2023). How to approximate cosine curve with 4^{th} and 6^{th} order Bézier curve in plane?. Thermal Science, 26(2), 559-570.
  • Michael, S. (2003). Bezier curves and surfaces. Lecture 8, Floater, Oslo.
  • Sederberg, T.W., Anderson, D.C. & Goldman, R.N. (1984). Implicit representation of parametric curves and surfaces. Computer Vision, Graphics, and Image Processing, 28(1), 72-84.
  • Weir, M.D., Hass, J. & Giordiano F.R. (2005). Thomas' Calculus. (11th ed.). Pearson Addison Wesley.
  • Weisstein, E.W. (2008). Hyperbolic Paraboloid. URL: http://mathworld.wolfram.com/HyperbolicParaboloid html.
  • Zhang, Jiwen. (1999). C-Bézier curves and surfaces. Graphical Models and Image Processing, 61(1), 2-15.
  • Zhang, H. & Jieqing, F. (2006). Bezier Curves and Surfaces (2). State Key Lab of CAD&CG Zhejiang University.
  • Zheng, J., Sederberg, T.W. (2003). Gaussian and mean curvature of rational Bézier patches. Computer Aided Geometric Design, 2(6), 297-301.

E^3'te Bazı Özel Bikuadratik Bezier Yüzeyleri Üzerine

Yıl 2025, Cilt: 15 Sayı: 3, 1110 - 1123, 01.09.2025
https://doi.org/10.21597/jist.1643500

Öz

Bu çalışmada bikuadratik Bezier yüzeyleri incelenmiştir. Bu yüzeyler bilim dünyasında çok önemli bir yere sahiptir. Bikuadratik Bézier yüzeylerinin önemi, yüzeyleri modellemek için düzgün, esnek ve hesaplama açısından verimli bir yöntem sağlama yeteneklerinde yatmaktadır. Daha basit bilineer yüzeyler ile daha karmaşık bikübik yüzeyler arasındaki boşluğu doldururlar ve hem basitliğin hem de hassasiyetin gerekli olduğu alanlarda harika bir çözüm sunarlar. Üst düzey 3B modellemede yüksek mertebeden benzerleri kadar yaygın olarak kullanılmasalar da, özellikle kalite ve hesaplama verimliliği arasındaki denge kritik olduğunda, yüzey tasarımı için yararlı bir araç olmaya devam etmektedirler. Bu çalışmada, öncelikle bikuadratik Bezier yüzeylerinin matris gösterimleri verilmiştir. Daha sonra, bikuadratik Bezier yüzeyleri olarak verilen bazı özel yüzey tiplerinin kontrol noktalarının nasıl bulunacağı belirtilmiş ve parabolik silindir, eliptik paraboloid ve hiperbolik paraboloid yüzeylerinin kontrol noktalarının nasıl hesaplandığı açıklanmıştır.

Kaynakça

  • Anonymous. 2013. Practical Guide to Bezier Surfaces. URL: https://www.gamedev.net/tutorials/programming/math-and-physics/practical-guide-to-bezier-surfaces-r3170/.
  • Farin, G. (2002). Curves and Surfaces for CAGD. (5th ed.). Academic Press.
  • Hagen, H. (1986). Bezier-curves with curvature and torsion continuity. Rocky Mountain J. Math., 16(3), 629-638.
  • Han, Xi-An, YiChen Ma, & XiLi Huang. (2008). A novel generalization of Bézier curve and surface. Journal of Computational and Applied Mathematics, 217(1), 180-193.
  • Hu, Gang, Junli Wu, & Xinqiang Qin. (2018). A new approach in designing of local controlled developable H-Bézier surfaces. Advances in Engineering Software, 121, 26-38.
  • Kılıçoğlu, Ş. & Şenyurt, S. (2022). On the Matrix Representation of 5th order Bézier Curve and derivatives in E³. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistic, 71(1), 133-152.
  • Kılıçoğlu, Ş. (2023). On Approximation of Helix by 3rd, 5th and 7th Order Bézier curves in E³. Thermal Science, 26(2), 525-538.
  • Kılıçoğlu, Ş. (2023). On approximation sine wave with the 5^{th} and 7^{th} order Bézier paths in E². Thermal Science, 26(2), 539-550.
  • Kılıçoğlu, Ş. & Yurttançıkmaz S. (2023). How to approximate cosine curve with 4^{th} and 6^{th} order Bézier curve in plane?. Thermal Science, 26(2), 559-570.
  • Michael, S. (2003). Bezier curves and surfaces. Lecture 8, Floater, Oslo.
  • Sederberg, T.W., Anderson, D.C. & Goldman, R.N. (1984). Implicit representation of parametric curves and surfaces. Computer Vision, Graphics, and Image Processing, 28(1), 72-84.
  • Weir, M.D., Hass, J. & Giordiano F.R. (2005). Thomas' Calculus. (11th ed.). Pearson Addison Wesley.
  • Weisstein, E.W. (2008). Hyperbolic Paraboloid. URL: http://mathworld.wolfram.com/HyperbolicParaboloid html.
  • Zhang, Jiwen. (1999). C-Bézier curves and surfaces. Graphical Models and Image Processing, 61(1), 2-15.
  • Zhang, H. & Jieqing, F. (2006). Bezier Curves and Surfaces (2). State Key Lab of CAD&CG Zhejiang University.
  • Zheng, J., Sederberg, T.W. (2003). Gaussian and mean curvature of rational Bézier patches. Computer Aided Geometric Design, 2(6), 297-301.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Matematik / Mathematics
Yazarlar

Şeyda Kılıçoglu 0000-0001-8535-944X

Semra Yurttançıkmaz 0000-0001-6712-3687

Erken Görünüm Tarihi 31 Ağustos 2025
Yayımlanma Tarihi 1 Eylül 2025
Gönderilme Tarihi 20 Şubat 2025
Kabul Tarihi 7 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Kılıçoglu, Ş., & Yurttançıkmaz, S. (2025). On The Some Special Biquadratic Bezier Surfaces in E^3. Journal of the Institute of Science and Technology, 15(3), 1110-1123. https://doi.org/10.21597/jist.1643500
AMA Kılıçoglu Ş, Yurttançıkmaz S. On The Some Special Biquadratic Bezier Surfaces in E^3. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2025;15(3):1110-1123. doi:10.21597/jist.1643500
Chicago Kılıçoglu, Şeyda, ve Semra Yurttançıkmaz. “On The Some Special Biquadratic Bezier Surfaces in E^3”. Journal of the Institute of Science and Technology 15, sy. 3 (Eylül 2025): 1110-23. https://doi.org/10.21597/jist.1643500.
EndNote Kılıçoglu Ş, Yurttançıkmaz S (01 Eylül 2025) On The Some Special Biquadratic Bezier Surfaces in E^3. Journal of the Institute of Science and Technology 15 3 1110–1123.
IEEE Ş. Kılıçoglu ve S. Yurttançıkmaz, “On The Some Special Biquadratic Bezier Surfaces in E^3”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 3, ss. 1110–1123, 2025, doi: 10.21597/jist.1643500.
ISNAD Kılıçoglu, Şeyda - Yurttançıkmaz, Semra. “On The Some Special Biquadratic Bezier Surfaces in E^3”. Journal of the Institute of Science and Technology 15/3 (Eylül2025), 1110-1123. https://doi.org/10.21597/jist.1643500.
JAMA Kılıçoglu Ş, Yurttançıkmaz S. On The Some Special Biquadratic Bezier Surfaces in E^3. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:1110–1123.
MLA Kılıçoglu, Şeyda ve Semra Yurttançıkmaz. “On The Some Special Biquadratic Bezier Surfaces in E^3”. Journal of the Institute of Science and Technology, c. 15, sy. 3, 2025, ss. 1110-23, doi:10.21597/jist.1643500.
Vancouver Kılıçoglu Ş, Yurttançıkmaz S. On The Some Special Biquadratic Bezier Surfaces in E^3. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(3):1110-23.