Derleme
BibTex RIS Kaynak Göster

Use of Exopolysaccharides in Food Technology

Yıl 2025, Cilt: 15 Sayı: 4, 1371 - 1382
https://doi.org/10.21597/jist.1688273

Öz

Exopolysaccharides are organic polymeric structures produced by different organisms such as bacteria, fungi and plants. This polymeric substance is mainly composed of straight or branched sugar units. This structure is a very complicated structure and new branches can be formed, including chains formed by branching. In the structure of the exopolysaccharide there are not only saccharide monomers. This structure may also contain various organic structures including phospholipids, proteins, amino acids, organic acids, monomer derivatives of sugars. If there is only one type of sugar in this structure, homopolysaccharide, if there is more than one type of sugar, heteropolysaccharides are formed. The main purpose of polysaccharides produced by bacteria is to form the main structure of the biofilm layer and protect the bacteria against unfavourable environmental conditions; however, this structure is so functional that it has the potential to be used in many areas from food to medical treatments. In addition to having properties such as antitumor, antioxidant, antimicrobial, immunomodulatory, they have many different roles such as emulsifier, hydrocolloid, water retainer, food preservative in the food field. This review aims to comprehensively examine a selection of noteworthy studies conducted in recent years and to provide insights and recommendations for future investigations based on the current state of knowledge.

Kaynakça

  • Abid, Y., Gharsallaoui, A., Dumas, E., Ghnimi, S., attia, H., & Azabou, S. (2019). Spray-drying microencapsulation of nisin by complexation with exopolysaccharides produced by probiotic Bacillus tequilensis-GM and Leuconostoc citreum-BMS. Colloids and Surfaces B: Biointerfaces, 181, 25-30. https://doi.org/10.1016/J.COLSURFB.2019.05.022
  • Achal, V., van Hullebusch, E. D., Decho, A. W. and Gutierrez, T. 2017. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Frontiersi in Microbiology, 8, 922. https://doi.org/10.3389/fmicb.2017.00922
  • Asif, M., Rooney, L. W., Ali, R., & Riaz, M. N. (2013). Application and Opportunities of Pulses in Food System: A Review. Critical Reviews in Food Science and Nutrition, 53(11), 1168–1179. https://doi.org/10.1080/10408398.2011.574804
  • Belfiore, C., Castellano, P., & Vignolo, G. (2007). Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiology, 24(3), 223–229. https://doi.org/10.1016/J.FM.2006.05.006
  • Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431. https://doi.org/10.1016/j.foodres.2009.09.003
  • Bresciani, A., & Marti, A. (2019). Using Pulses in Baked Products: Lights, Shadows, and Potential Solutions. Foods, 8(10), 451. https://doi.org/10.3390/foods8100451
  • Burešová, I., Tokár, M., Mareček, J., Hřivna, L., Faměra, O., & Šottníková, V. (2017). The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. Journal of Cereal Science, 75, 158–164. https://doi.org/10.1016/j.jcs.2017.04.004
  • Cai, R., Klamczynska, B., & Baik, B.-K. (2001). Preparation of Bean Curds from Protein Fractions of Six Legumes. Journal of Agricultural and Food Chemistry, 49(6), 3068–3073. https://doi.org/10.1021/jf0013398
  • Coda, R., Varis, J., Verni, M., Rizzello, C. G., & Katina, K. (2017). Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT - Food Science and Technology, 82, 296–302. https://doi.org/10.1016/j.lwt.2017.04.062
  • De Vuyst, L., De Vin, F., Vaningelgem, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal, 11(9), 687–707. https://doi.org/10.1016/S0958-6946(01)00114-5 Donot, F., Fontana, A., Baccou, J. C. and Schorr-Galindo, S. (2012). Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951–962. https://doi.org/10.1016/J.CARBPOL.2011.08.083
  • Duc, G. (1997). Faba bean (Vicia faba L.). Field Crops Research, 53(1–3), 99–109. https://doi.org/10.1016/S0378-4290(97)00025-7
  • Ergene, E., & Avcı, A. (2016). Microbial exopolisaccharides. Sakarya University Journal of Science, 20(2), 193–202. https://doi.org/10.16984/SAUFENBILDER.91974
  • Folkenberg, D. M., Dejmek, P., Skriver, A., Skov Guldager, H., & Ipsen, R. (2006). Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. International Dairy Journal, 16(2), 111–118. https://doi.org/10.1016/j.idairyj.2004.10.013
  • Galle, S., Schwab, C., Arendt, E., & Gänzle, M. (2010). Exopolysaccharide-Forming Weissella Strains as Starter Cultures for Sorghum and Wheat Sourdoughs. Journal of Agricultural and Food Chemistry, 58(9), 5834–5841. https://doi.org/10.1021/jf1002683
  • García-Alonso, A., Goñi, I., & Saura-Calixto, F. (1998). Resistant starch and potential glycaemic index of raw and cooked legumes (lentils, chickpeas and beans). European Food Research and Technology, 206(4), 284–287. https://doi.org/10.1007/S002170050258
  • Gharsallaoui, A., Oulahal, N., Joly, C., & Degraeve, P. (2016). Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Critical Reviews in Food Science and Nutrition, 56(8), 1262–1274. https://doi.org/10.1080/10408398.2013.763765
  • Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., & Rizzello, C. G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 302, 103–113. https://doi.org/10.1016/j.ijfoodmicro.2018.05.018
  • Hernández-Alcántara, A. M., Chiva, R., Mohedano, M. L., Russo, P., Ruiz-Masó, J. Á., del Solar, G., Spano, G., Tamame, M., & López, P. (2022). Weissella cibaria riboflavin-overproducing and dextran-producing strains useful for the development of functional bread. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.978831
  • Hess, S. J., Roberts, R. F., & Ziegler, G. R. (1997). Rheological Properties of Nonfat Yogurt Stabilized Using Lactobacillus delbrueckii ssp. bulgaricus Producing Exopolysaccharide or Using Commercial Stabilizer Systems. Journal of Dairy Science, 80(2), 252–263. https://doi.org/10.3168/jds.S0022-0302(97)75933-2
  • Karatas, S. M., Ekici, L., Develi, I., Dertli, E., & Sagdic, O. (2021). Effects of GSM 1800 band radiation on composition, structure and bioactivity of exopolysaccharides produced by yoghurt starter cultures. Archives of Microbiology, 203(4), 1697–1706. https://doi.org/10.1007/s00203-020-02168-4
  • Kaur, N., & Dey, P. (2023). Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications. Research in Microbiology, 174(4), 104024. https://doi.org/10.1016/J.RESMIC.2022.104024
  • Kavitake, D., Balyan, S., Devi, P. B., & Shetty, P. H. (2019). Interface between food grade flavour and water soluble galactan biopolymer to form a stable water-in-oil-in-water emulsion. International Journal of Biological Macromolecules, 135, 445–452. https://doi.org/10.1016/j.ijbiomac.2019.05.199
  • Kohajdová, Z., Karovičová, J., & Magala, M. (2013). Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chemical Papers, 67(4). https://doi.org/10.2478/s11696-012-0295-3
  • Lacaze, G., Wick, M., & Cappelle, S. (2007). Emerging fermentation technologies: Development of novel sourdoughs. Food Microbiology, 24(2), 155–160. https://doi.org/10.1016/j.fm.2006.07.015
  • Lee, H. C., Htoon, A. K., Uthayakumaran, S., & Paterson, J. L. (2007). Chemical and functional quality of protein isolated from alkaline extraction of Australian lentil cultivars: Matilda and Digger. Food Chemistry, 102(4), 1199–1207. https://doi.org/10.1016/j.foodchem.2006.07.008
  • Lu, S., Luo, Y., Turner, E., & Feng, H. (2007). Efficacy of sodium chlorite as an inhibitor of enzymatic browning in apple slices. Food Chemistry, 104(2), 824–829. https://doi.org/10.1016/j.foodchem.2006.12.050
  • Martin, I., Ruysschaert, J. M., Sanders, D., & Giffard, C. J. (1996). Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. European Journal of Biochemistry, 239(1), 156–164. https://doi.org/10.1111/J.1432-1033.1996.0156U.X
  • Melini, F., Melini, V., Luziatelli, F., & Ruzzi, M. (2017). Current and Forward‐Looking Approaches to Technological and Nutritional Improvements of Gluten‐Free Bread with Legume Flours: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1101–1122. https://doi.org/10.1111/1541-4337.12279
  • Miñarro, B., Albanell, E., Aguilar, N., Guamis, B., & Capellas, M. (2012). Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 56(2), 476–481. https://doi.org/10.1016/j.jcs.2012.04.012
  • Mıdık, F. (2011). Bazı laktik asit bakterilerinin ekzopolisakkarit (EPS) üretimi yönünden incelenmesi. https://search.proquest.com/openview/0afa7e7f270aff712096658807845d85/1?pq-origsite=gscholar&cbl=2026366&diss=y
  • Ning, Y., Shi, J., Yu, S., Du, R., Ge, J., & Zhao, D. (2024). Characterization of exopolysaccharide / starch composite film incorporated with TiO2 nanoparticles and its application in chilled meat preservation. International Journal of Biological Macromolecules, 281, 136270. https://doi.org/10.1016/j.ijbiomac.2024.136270
  • Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial Exopolysaccharides: Functionality and Prospects. International Journal of Molecular Sciences 2012, Vol. 13, Pages 14002-14015, 13(11), 14002–14015. https://doi.org/10.3390/IJMS131114002
  • Ogunremi, O. R., Freimüller Leischtfeld, S., & Miescher Schwenninger, S. (2022). MALDI-TOF MS profiling and exopolysaccharide production properties of lactic acid bacteria from Kunu-zaki - A cereal-based Nigerian fermented beverage. International Journal of Food Microbiology, 366, 109563. https://doi.org/10.1016/J.IJFOODMICRO.2022.109563
  • Oguntoyinbo, F., Tourlomousis, P., … M. G.-I. journal of, & 2011, undefined. (2011). Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. ElsevierFA Oguntoyinbo, P Tourlomousis, MJ Gasson, A NarbadInternational Journal of Food Microbiology, 2011•Elsevier. https://www.sciencedirect.com/science/article/pii/S0168160510007154
  • Özcan, E., and Öner, E. T. 2015. Microbial production of extracellular polysaccharides from biomass sources. Polysaccharides: Bioactivity and Biotechnology, 161– 184. https://doi.org/10.1007/978-3-319-16298-0_51
  • Perri, G., Coda, R., Rizzello, C. G., Celano, G., Ampollini, M., Gobbetti, M., De Angelis, M., & Calasso, M. (2021). Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chemistry, 355, 129638. https://doi.org/10.1016/j.foodchem.2021.129638
  • Perri, G., Rizzello, C. G., Ampollini, M., Celano, G., Coda, R., Gobbetti, M., De Angelis, M., & Calasso, M. (2021). Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties. Foods, 10(7), 1489. https://doi.org/10.3390/foods10071489
  • Pourjafar, H., Ansari, F., Sadeghi, A., Samakkhah, S. A., & Jafari, S. M. (2023). Functional and health-promoting properties of probiotics’ exopolysaccharides; isolation, characterization, and applications in the food industry. Critical Reviews in Food Science and Nutrition, 63(26), 8194–8225. https://doi.org/10.1080/10408398.2022.2047883
  • Rai, M., Pandit, R., Gaikwad, S., & Kövics, G. (2016). Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. Journal of Food Science and Technology, 53(9), 3381–3394. https://doi.org/10.1007/S13197-016-2318-5/TABLES/3
  • Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75–81. https://doi.org/10.1016/S0268-005X(00)00054-0
  • Russo, P., Diez-Ozaeta, I., Mangieri, N., Tamame, M., Spano, G., Dueñas, M. T., López, P., & Mohedano, M. L. (2023). Biotechnological Potential and Safety Evaluation of Dextran- and Riboflavin-Producing Weisella cibaria Strains for Gluten-Free Baking. Foods, 13(1), 69. https://doi.org/10.3390/foods13010069
  • Saif, F., Fibre, E. S.-B. C. and D., & 2020, undefined. (2020). Characterization and bioactivities of exopolysaccharide produced from probiotic Lactobacillus plantarum 47FE and Lactobacillus pentosus 68FE. Elsevier. https://www.sciencedirect.com/science/article/pii/S221261982030022X
  • Sharma, S., & Rao, T. V. R. (2015). Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT - Food Science and Technology, 62(1), 791–800. https://doi.org/10.1016/j.lwt.2014.11.050
  • Singh, S., Datta, S., Narayanan, K. B., & Rajnish, K. N. (2021). Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. Journal of Genetic Engineering and Biotechnology, 19(1), 1–19. https://doi.org/10.1186/S43141-021-00242-Y/FIGURES/5
  • Soyuçok, A., Ekiz, T., & Başyiğit Kılıç, G. (2016). Ekzopolisakkaritlerin Özellikleri ve Gıda Sanayindeki Önemi. Nevşehir Bilim Ve Teknoloji Dergisi, 5, 332-344. https://doi.org/10.17100/nevbiltek.211029
  • Tilley, A., McHenry, M. P., McHenry, J. A., Solah, V., & Bayliss, K. (2023). Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Current Research in Food Science, 7, 100623. https://doi.org/10.1016/J.CRFS.2023.100623
  • Uçar, Y. (2020). Su Ürünlerinde Nisin Uygulamaları. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3), 639-651. https://doi.org/10.29133/yyutbd.726727
  • Valerio, F., Bavaro, A. R., Di Biase, M., Lonigro, S. L., Logrieco, A. F., & Lavermicocca, P. (2020). Effect of Amaranth and Quinoa Flours on Exopolysaccharide Production and Protein Profile of Liquid Sourdough Fermented by Weissella cibaria and Lactobacillus plantarum. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00967
  • Wang, Q., Zhang, L., & Ding, W. (2020). Eugenol nanocapsules embedded with gelatin-chitosan for chilled pork preservation. International Journal of Biological Macromolecules, 158, 837–844. https://doi.org/10.1016/j.ijbiomac.2020.04.182
  • Wang, Y., Compaoré-Sérémé, D., Sawadogo-Lingani, H., Coda, R., Katina, K., & Maina, N. H. (2019). Influence of dextran synthesized in situ on the rheological, technological and nutritional properties of whole grain pearl millet bread. Food Chemistry, 285, 221–230. https://doi.org/10.1016/j.foodchem.2019.01.126
  • Wang, Y., Sorvali, P., Laitila, A., Maina, N. H., Coda, R., & Katina, K. (2018). Dextran produced in situ as a tool to improve the quality of wheat-faba bean composite bread. Food Hydrocolloids, 84, 396–405. https://doi.org/10.1016/j.foodhyd.2018.05.042
  • Wolter, A., Hager, A.-S., Zannini, E., Czerny, M., & Arendt, E. K. (2014). Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. International Journal of Food Microbiology, 172, 83–91. https://doi.org/10.1016/j.ijfoodmicro.2013.11.015
  • Wolter, A., Hager, A.-S., Zannini, E., Galle, S., Gänzle, M. G., Waters, D. M., & Arendt, E. K. (2014). Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiology, 37, 44–50. https://doi.org/10.1016/j.fm.2013.06.009
  • Xie, Q., Liu, G., Zhang, Y., Yu, J., Wang, Y., & Ma, X. (2023). Active edible films with plant extracts: a updated review of their types, preparations, reinforcing properties, and applications in muscle foods packaging and preservation. Critical Reviews in Food Science and Nutrition, 63(32), 11425–11447. https://doi.org/10.1080/10408398.2022.2092058
  • Xu, Y., Coda, R., Holopainen-Mantila, U., Laitila, A., Katina, K., & Tenkanen, M. (2019a). Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Research International, 115, 191–199. https://doi.org/10.1016/j.foodres.2018.08.054
  • Xu, Y., Coda, R., Holopainen-Mantila, U., Laitila, A., Katina, K., & Tenkanen, M. (2019b). Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Research International, 115, 191–199. https://doi.org/10.1016/j.foodres.2018.08.054
  • Yegrem, L. (2021). Nutritional Composition, Antinutritional Factors, and Utilization Trends of Ethiopian Chickpea (Cicer arietinum L.). International Journal of Food Science, 2021, 1–10. https://doi.org/10.1155/2021/5570753
  • Zafar, T. A., Al-Hassawi, F., Al-Khulaifi, F., Al-Rayyes, G., Waslien, C., & Huffman, F. G. (2015). Organoleptic and glycemic properties of chickpea-wheat composite breads. Journal of Food Science and Technology, 52(4), 2256–2263. https://doi.org/10.1007/s13197-013-1192-7
  • Zannini, E., Waters, D. M., & Arendt, E. K. (2014). The application of dextran compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. European Food Research and Technology, 238(5), 763–771. https://doi.org/10.1007/s00217-014-2161-8
  • Zeng, Z., Yang, Y.-J., Tu, Q., Jian, Y.-Y., Xie, D.-M., Bai, T., Li, S.-S., Liu, Y.-T., Li, C., Wang, C.-X., & Liu, A.-P. (2023). Preparation and characterization of carboxymethyl chitosan/pullulan composite film incorporated with eugenol and its application in the preservation of chilled meat. Meat Science, 198, 109085. https://doi.org/10.1016/j.meatsci.2022.109085
  • Zhang, J., Yao, Y., Li, J., Ju, X., & Wang, L. (2023). Impact of exopolysaccharides-producing lactic acid bacteria on the chemical, rheological properties of buckwheat sourdough and the quality of buckwheat bread. Food Chemistry, 425, 136369. https://doi.org/10.1016/j.foodchem.2023.136369

Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı

Yıl 2025, Cilt: 15 Sayı: 4, 1371 - 1382
https://doi.org/10.21597/jist.1688273

Öz

Ekzopolisakkaritler bakteriler, mantarlar ve bitkiler gibi farklı canlılar tarafından üretilen organik polimerik yapılardır. Bu polimerik madde esas olarak şeker ünitelerinin düz veya dallanmış şekilde birleşmesi ile meydana gelir. Bu yapı çok karmaşık bir yapı olup dallanma ile oluşan zincirler dahil yeni dallanmalar oluşabilir. Ekzopolisakkaritin yapısında sadece sakkarit monomerler yoktur. Bu yapıda aynı zamanda fosfolipitler, proteinler, aminoasitler, organik asitler, şekerlerin monomer türevleri dahil çeşitli organik yapılar bulunabilir. Bu yapıda tek bir şeker çeşidi varsa homopolisakkarit eğer birden fazla şeker çeşidi var ise heteropolisakkaritler oluşur. Bakterilerin ürettiği polisakkaritlerin asıl amacı biyofilm tabakasının ana yapısını oluşturmak ve bakteriyi olumsuz çevre şartlarına karşı korumaktır; fakat bu yapı o kadar işlevseldir ki gıda alanından tıbbi tedavilere kadar birçok alanda kullanılma potansiyeline sahiptir. Antitümör, antioksidan, anmikrobiyal, immünomodülatör gibi özellikleri barındırmasının yanısıra gıda alanında emülgatör,hidrokolloid, su tutucu,gıda koruyucu gibi çok farklı rolleri mevcuttur. Bu derleme, son yıllarda konuya ilişkin yapılmış bazı dikkate değer araştırmaları bütüncül bir şekilde ele almayı ve bu doğrultuda gelecekte gerçekleştirilebilecek çalışmalar için öngörü ve öneriler sunmayı amaçlamaktadır.

Kaynakça

  • Abid, Y., Gharsallaoui, A., Dumas, E., Ghnimi, S., attia, H., & Azabou, S. (2019). Spray-drying microencapsulation of nisin by complexation with exopolysaccharides produced by probiotic Bacillus tequilensis-GM and Leuconostoc citreum-BMS. Colloids and Surfaces B: Biointerfaces, 181, 25-30. https://doi.org/10.1016/J.COLSURFB.2019.05.022
  • Achal, V., van Hullebusch, E. D., Decho, A. W. and Gutierrez, T. 2017. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Frontiersi in Microbiology, 8, 922. https://doi.org/10.3389/fmicb.2017.00922
  • Asif, M., Rooney, L. W., Ali, R., & Riaz, M. N. (2013). Application and Opportunities of Pulses in Food System: A Review. Critical Reviews in Food Science and Nutrition, 53(11), 1168–1179. https://doi.org/10.1080/10408398.2011.574804
  • Belfiore, C., Castellano, P., & Vignolo, G. (2007). Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiology, 24(3), 223–229. https://doi.org/10.1016/J.FM.2006.05.006
  • Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431. https://doi.org/10.1016/j.foodres.2009.09.003
  • Bresciani, A., & Marti, A. (2019). Using Pulses in Baked Products: Lights, Shadows, and Potential Solutions. Foods, 8(10), 451. https://doi.org/10.3390/foods8100451
  • Burešová, I., Tokár, M., Mareček, J., Hřivna, L., Faměra, O., & Šottníková, V. (2017). The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. Journal of Cereal Science, 75, 158–164. https://doi.org/10.1016/j.jcs.2017.04.004
  • Cai, R., Klamczynska, B., & Baik, B.-K. (2001). Preparation of Bean Curds from Protein Fractions of Six Legumes. Journal of Agricultural and Food Chemistry, 49(6), 3068–3073. https://doi.org/10.1021/jf0013398
  • Coda, R., Varis, J., Verni, M., Rizzello, C. G., & Katina, K. (2017). Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT - Food Science and Technology, 82, 296–302. https://doi.org/10.1016/j.lwt.2017.04.062
  • De Vuyst, L., De Vin, F., Vaningelgem, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal, 11(9), 687–707. https://doi.org/10.1016/S0958-6946(01)00114-5 Donot, F., Fontana, A., Baccou, J. C. and Schorr-Galindo, S. (2012). Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951–962. https://doi.org/10.1016/J.CARBPOL.2011.08.083
  • Duc, G. (1997). Faba bean (Vicia faba L.). Field Crops Research, 53(1–3), 99–109. https://doi.org/10.1016/S0378-4290(97)00025-7
  • Ergene, E., & Avcı, A. (2016). Microbial exopolisaccharides. Sakarya University Journal of Science, 20(2), 193–202. https://doi.org/10.16984/SAUFENBILDER.91974
  • Folkenberg, D. M., Dejmek, P., Skriver, A., Skov Guldager, H., & Ipsen, R. (2006). Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. International Dairy Journal, 16(2), 111–118. https://doi.org/10.1016/j.idairyj.2004.10.013
  • Galle, S., Schwab, C., Arendt, E., & Gänzle, M. (2010). Exopolysaccharide-Forming Weissella Strains as Starter Cultures for Sorghum and Wheat Sourdoughs. Journal of Agricultural and Food Chemistry, 58(9), 5834–5841. https://doi.org/10.1021/jf1002683
  • García-Alonso, A., Goñi, I., & Saura-Calixto, F. (1998). Resistant starch and potential glycaemic index of raw and cooked legumes (lentils, chickpeas and beans). European Food Research and Technology, 206(4), 284–287. https://doi.org/10.1007/S002170050258
  • Gharsallaoui, A., Oulahal, N., Joly, C., & Degraeve, P. (2016). Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Critical Reviews in Food Science and Nutrition, 56(8), 1262–1274. https://doi.org/10.1080/10408398.2013.763765
  • Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., & Rizzello, C. G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 302, 103–113. https://doi.org/10.1016/j.ijfoodmicro.2018.05.018
  • Hernández-Alcántara, A. M., Chiva, R., Mohedano, M. L., Russo, P., Ruiz-Masó, J. Á., del Solar, G., Spano, G., Tamame, M., & López, P. (2022). Weissella cibaria riboflavin-overproducing and dextran-producing strains useful for the development of functional bread. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.978831
  • Hess, S. J., Roberts, R. F., & Ziegler, G. R. (1997). Rheological Properties of Nonfat Yogurt Stabilized Using Lactobacillus delbrueckii ssp. bulgaricus Producing Exopolysaccharide or Using Commercial Stabilizer Systems. Journal of Dairy Science, 80(2), 252–263. https://doi.org/10.3168/jds.S0022-0302(97)75933-2
  • Karatas, S. M., Ekici, L., Develi, I., Dertli, E., & Sagdic, O. (2021). Effects of GSM 1800 band radiation on composition, structure and bioactivity of exopolysaccharides produced by yoghurt starter cultures. Archives of Microbiology, 203(4), 1697–1706. https://doi.org/10.1007/s00203-020-02168-4
  • Kaur, N., & Dey, P. (2023). Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications. Research in Microbiology, 174(4), 104024. https://doi.org/10.1016/J.RESMIC.2022.104024
  • Kavitake, D., Balyan, S., Devi, P. B., & Shetty, P. H. (2019). Interface between food grade flavour and water soluble galactan biopolymer to form a stable water-in-oil-in-water emulsion. International Journal of Biological Macromolecules, 135, 445–452. https://doi.org/10.1016/j.ijbiomac.2019.05.199
  • Kohajdová, Z., Karovičová, J., & Magala, M. (2013). Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chemical Papers, 67(4). https://doi.org/10.2478/s11696-012-0295-3
  • Lacaze, G., Wick, M., & Cappelle, S. (2007). Emerging fermentation technologies: Development of novel sourdoughs. Food Microbiology, 24(2), 155–160. https://doi.org/10.1016/j.fm.2006.07.015
  • Lee, H. C., Htoon, A. K., Uthayakumaran, S., & Paterson, J. L. (2007). Chemical and functional quality of protein isolated from alkaline extraction of Australian lentil cultivars: Matilda and Digger. Food Chemistry, 102(4), 1199–1207. https://doi.org/10.1016/j.foodchem.2006.07.008
  • Lu, S., Luo, Y., Turner, E., & Feng, H. (2007). Efficacy of sodium chlorite as an inhibitor of enzymatic browning in apple slices. Food Chemistry, 104(2), 824–829. https://doi.org/10.1016/j.foodchem.2006.12.050
  • Martin, I., Ruysschaert, J. M., Sanders, D., & Giffard, C. J. (1996). Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. European Journal of Biochemistry, 239(1), 156–164. https://doi.org/10.1111/J.1432-1033.1996.0156U.X
  • Melini, F., Melini, V., Luziatelli, F., & Ruzzi, M. (2017). Current and Forward‐Looking Approaches to Technological and Nutritional Improvements of Gluten‐Free Bread with Legume Flours: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1101–1122. https://doi.org/10.1111/1541-4337.12279
  • Miñarro, B., Albanell, E., Aguilar, N., Guamis, B., & Capellas, M. (2012). Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 56(2), 476–481. https://doi.org/10.1016/j.jcs.2012.04.012
  • Mıdık, F. (2011). Bazı laktik asit bakterilerinin ekzopolisakkarit (EPS) üretimi yönünden incelenmesi. https://search.proquest.com/openview/0afa7e7f270aff712096658807845d85/1?pq-origsite=gscholar&cbl=2026366&diss=y
  • Ning, Y., Shi, J., Yu, S., Du, R., Ge, J., & Zhao, D. (2024). Characterization of exopolysaccharide / starch composite film incorporated with TiO2 nanoparticles and its application in chilled meat preservation. International Journal of Biological Macromolecules, 281, 136270. https://doi.org/10.1016/j.ijbiomac.2024.136270
  • Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial Exopolysaccharides: Functionality and Prospects. International Journal of Molecular Sciences 2012, Vol. 13, Pages 14002-14015, 13(11), 14002–14015. https://doi.org/10.3390/IJMS131114002
  • Ogunremi, O. R., Freimüller Leischtfeld, S., & Miescher Schwenninger, S. (2022). MALDI-TOF MS profiling and exopolysaccharide production properties of lactic acid bacteria from Kunu-zaki - A cereal-based Nigerian fermented beverage. International Journal of Food Microbiology, 366, 109563. https://doi.org/10.1016/J.IJFOODMICRO.2022.109563
  • Oguntoyinbo, F., Tourlomousis, P., … M. G.-I. journal of, & 2011, undefined. (2011). Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. ElsevierFA Oguntoyinbo, P Tourlomousis, MJ Gasson, A NarbadInternational Journal of Food Microbiology, 2011•Elsevier. https://www.sciencedirect.com/science/article/pii/S0168160510007154
  • Özcan, E., and Öner, E. T. 2015. Microbial production of extracellular polysaccharides from biomass sources. Polysaccharides: Bioactivity and Biotechnology, 161– 184. https://doi.org/10.1007/978-3-319-16298-0_51
  • Perri, G., Coda, R., Rizzello, C. G., Celano, G., Ampollini, M., Gobbetti, M., De Angelis, M., & Calasso, M. (2021). Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chemistry, 355, 129638. https://doi.org/10.1016/j.foodchem.2021.129638
  • Perri, G., Rizzello, C. G., Ampollini, M., Celano, G., Coda, R., Gobbetti, M., De Angelis, M., & Calasso, M. (2021). Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties. Foods, 10(7), 1489. https://doi.org/10.3390/foods10071489
  • Pourjafar, H., Ansari, F., Sadeghi, A., Samakkhah, S. A., & Jafari, S. M. (2023). Functional and health-promoting properties of probiotics’ exopolysaccharides; isolation, characterization, and applications in the food industry. Critical Reviews in Food Science and Nutrition, 63(26), 8194–8225. https://doi.org/10.1080/10408398.2022.2047883
  • Rai, M., Pandit, R., Gaikwad, S., & Kövics, G. (2016). Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. Journal of Food Science and Technology, 53(9), 3381–3394. https://doi.org/10.1007/S13197-016-2318-5/TABLES/3
  • Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75–81. https://doi.org/10.1016/S0268-005X(00)00054-0
  • Russo, P., Diez-Ozaeta, I., Mangieri, N., Tamame, M., Spano, G., Dueñas, M. T., López, P., & Mohedano, M. L. (2023). Biotechnological Potential and Safety Evaluation of Dextran- and Riboflavin-Producing Weisella cibaria Strains for Gluten-Free Baking. Foods, 13(1), 69. https://doi.org/10.3390/foods13010069
  • Saif, F., Fibre, E. S.-B. C. and D., & 2020, undefined. (2020). Characterization and bioactivities of exopolysaccharide produced from probiotic Lactobacillus plantarum 47FE and Lactobacillus pentosus 68FE. Elsevier. https://www.sciencedirect.com/science/article/pii/S221261982030022X
  • Sharma, S., & Rao, T. V. R. (2015). Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT - Food Science and Technology, 62(1), 791–800. https://doi.org/10.1016/j.lwt.2014.11.050
  • Singh, S., Datta, S., Narayanan, K. B., & Rajnish, K. N. (2021). Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. Journal of Genetic Engineering and Biotechnology, 19(1), 1–19. https://doi.org/10.1186/S43141-021-00242-Y/FIGURES/5
  • Soyuçok, A., Ekiz, T., & Başyiğit Kılıç, G. (2016). Ekzopolisakkaritlerin Özellikleri ve Gıda Sanayindeki Önemi. Nevşehir Bilim Ve Teknoloji Dergisi, 5, 332-344. https://doi.org/10.17100/nevbiltek.211029
  • Tilley, A., McHenry, M. P., McHenry, J. A., Solah, V., & Bayliss, K. (2023). Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Current Research in Food Science, 7, 100623. https://doi.org/10.1016/J.CRFS.2023.100623
  • Uçar, Y. (2020). Su Ürünlerinde Nisin Uygulamaları. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3), 639-651. https://doi.org/10.29133/yyutbd.726727
  • Valerio, F., Bavaro, A. R., Di Biase, M., Lonigro, S. L., Logrieco, A. F., & Lavermicocca, P. (2020). Effect of Amaranth and Quinoa Flours on Exopolysaccharide Production and Protein Profile of Liquid Sourdough Fermented by Weissella cibaria and Lactobacillus plantarum. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00967
  • Wang, Q., Zhang, L., & Ding, W. (2020). Eugenol nanocapsules embedded with gelatin-chitosan for chilled pork preservation. International Journal of Biological Macromolecules, 158, 837–844. https://doi.org/10.1016/j.ijbiomac.2020.04.182
  • Wang, Y., Compaoré-Sérémé, D., Sawadogo-Lingani, H., Coda, R., Katina, K., & Maina, N. H. (2019). Influence of dextran synthesized in situ on the rheological, technological and nutritional properties of whole grain pearl millet bread. Food Chemistry, 285, 221–230. https://doi.org/10.1016/j.foodchem.2019.01.126
  • Wang, Y., Sorvali, P., Laitila, A., Maina, N. H., Coda, R., & Katina, K. (2018). Dextran produced in situ as a tool to improve the quality of wheat-faba bean composite bread. Food Hydrocolloids, 84, 396–405. https://doi.org/10.1016/j.foodhyd.2018.05.042
  • Wolter, A., Hager, A.-S., Zannini, E., Czerny, M., & Arendt, E. K. (2014). Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. International Journal of Food Microbiology, 172, 83–91. https://doi.org/10.1016/j.ijfoodmicro.2013.11.015
  • Wolter, A., Hager, A.-S., Zannini, E., Galle, S., Gänzle, M. G., Waters, D. M., & Arendt, E. K. (2014). Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiology, 37, 44–50. https://doi.org/10.1016/j.fm.2013.06.009
  • Xie, Q., Liu, G., Zhang, Y., Yu, J., Wang, Y., & Ma, X. (2023). Active edible films with plant extracts: a updated review of their types, preparations, reinforcing properties, and applications in muscle foods packaging and preservation. Critical Reviews in Food Science and Nutrition, 63(32), 11425–11447. https://doi.org/10.1080/10408398.2022.2092058
  • Xu, Y., Coda, R., Holopainen-Mantila, U., Laitila, A., Katina, K., & Tenkanen, M. (2019a). Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Research International, 115, 191–199. https://doi.org/10.1016/j.foodres.2018.08.054
  • Xu, Y., Coda, R., Holopainen-Mantila, U., Laitila, A., Katina, K., & Tenkanen, M. (2019b). Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Research International, 115, 191–199. https://doi.org/10.1016/j.foodres.2018.08.054
  • Yegrem, L. (2021). Nutritional Composition, Antinutritional Factors, and Utilization Trends of Ethiopian Chickpea (Cicer arietinum L.). International Journal of Food Science, 2021, 1–10. https://doi.org/10.1155/2021/5570753
  • Zafar, T. A., Al-Hassawi, F., Al-Khulaifi, F., Al-Rayyes, G., Waslien, C., & Huffman, F. G. (2015). Organoleptic and glycemic properties of chickpea-wheat composite breads. Journal of Food Science and Technology, 52(4), 2256–2263. https://doi.org/10.1007/s13197-013-1192-7
  • Zannini, E., Waters, D. M., & Arendt, E. K. (2014). The application of dextran compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. European Food Research and Technology, 238(5), 763–771. https://doi.org/10.1007/s00217-014-2161-8
  • Zeng, Z., Yang, Y.-J., Tu, Q., Jian, Y.-Y., Xie, D.-M., Bai, T., Li, S.-S., Liu, Y.-T., Li, C., Wang, C.-X., & Liu, A.-P. (2023). Preparation and characterization of carboxymethyl chitosan/pullulan composite film incorporated with eugenol and its application in the preservation of chilled meat. Meat Science, 198, 109085. https://doi.org/10.1016/j.meatsci.2022.109085
  • Zhang, J., Yao, Y., Li, J., Ju, X., & Wang, L. (2023). Impact of exopolysaccharides-producing lactic acid bacteria on the chemical, rheological properties of buckwheat sourdough and the quality of buckwheat bread. Food Chemistry, 425, 136369. https://doi.org/10.1016/j.foodchem.2023.136369
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bakteriyoloji
Bölüm Derleme
Yazarlar

Osman Eren 0000-0002-2016-7671

Halis Şakiroğlu 0000-0002-2964-4497

Erken Görünüm Tarihi 27 Kasım 2025
Yayımlanma Tarihi 27 Kasım 2025
Gönderilme Tarihi 2 Mayıs 2025
Kabul Tarihi 14 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Eren, O., & Şakiroğlu, H. (2025). Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı. Journal of the Institute of Science and Technology, 15(4), 1371-1382. https://doi.org/10.21597/jist.1688273
AMA Eren O, Şakiroğlu H. Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. Kasım 2025;15(4):1371-1382. doi:10.21597/jist.1688273
Chicago Eren, Osman, ve Halis Şakiroğlu. “Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı”. Journal of the Institute of Science and Technology 15, sy. 4 (Kasım 2025): 1371-82. https://doi.org/10.21597/jist.1688273.
EndNote Eren O, Şakiroğlu H (01 Kasım 2025) Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı. Journal of the Institute of Science and Technology 15 4 1371–1382.
IEEE O. Eren ve H. Şakiroğlu, “Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 4, ss. 1371–1382, 2025, doi: 10.21597/jist.1688273.
ISNAD Eren, Osman - Şakiroğlu, Halis. “Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı”. Journal of the Institute of Science and Technology 15/4 (Kasım2025), 1371-1382. https://doi.org/10.21597/jist.1688273.
JAMA Eren O, Şakiroğlu H. Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:1371–1382.
MLA Eren, Osman ve Halis Şakiroğlu. “Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı”. Journal of the Institute of Science and Technology, c. 15, sy. 4, 2025, ss. 1371-82, doi:10.21597/jist.1688273.
Vancouver Eren O, Şakiroğlu H. Ekzopolisakkaritlerin Gıda Teknolojisinde Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(4):1371-82.