Investigation of the underwater hydrodynamics of a hybrid autonomous military platform capable of surface and underwater navigation
Yıl 2025,
Cilt: 8 Sayı: 2, 197 - 216
Utku Cem Karabulut
,
Barış Barlas
,
Şebnem Helvacıoğlu
,
Mehmet Ali Baykal
Öz
This study comprehensively examines the underwater hydrodynamic performance of a hybrid semi-submersible naval platform capable of operating both on the surface and underwater using experimental and numerical methods, aiming to contribute to the design of autonomous military crafts. Model tests were conducted at Istanbul Technical University (ITU) Ata Nutku Ship Model Testing Laboratory, while computational fluid dynamics (CFD) analyses were performed using the Star CCM+ software. The study involved underwater resistance experiments at different submergence depths and speeds, with results evaluated through experimental uncertainty analyses. CFD results were validated by comparing them with experimental data, showing less than 5% overall differences. Findings indicate that submergence depth directly influences underwater performance and that hydrodynamic effects increase in near-surface operations. This study provides valuable data for optimizing the design of hybrid naval vessels and demonstrates the effectiveness of CFD methods in such analyses. Future research will focus on assessing dynamic manoeuvrability and environmental effects.
Kaynakça
-
Alquwayzani, A. A., & Albuali, A. A. (2024). A Systematic Literature Review of Zero Trust Architecture for Military UAV Security Systems. IEEE Access.
-
Amiri M.M., Esperança P.T., Vitola M.A., & Sphaier S.H. (2018). How does the free surface affect the hydrodynamics of a shallowly submerged submarine? Appl. Ocean Res. 76:34–50. https://doi.org/10.1016/j.apor.2018.04.008
-
Amiri M.M., Sphaier S.H., Vitola M.A., & Esperança P.T. (2019) URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift. Appl. Ocean Res. 84:192–205. https://doi.org/10.1016/j.apor.2019.01.012
-
Amory, A., & Maehle, E. (2018). Modelling and CFD simulation of a micro autonomous underwater vehicle SEMBIO. In OCEANS 2018 MTS/IEEE Charleston (pp. 1-6). IEEE.
-
Benitz, M.A., Carlson, D.W., Seyed-Aghazadeh, B., Modarres-Sadeghi, Y., Lackner, M.A., & Schmidt, D.P. (2016). CFD simulations and experimental measurements of flow past free-surface piercing, finite length cylinders with varying aspect ratios. Computers & Fluids, 136, 247-259.
-
Bertolazzi, E., & Manzini, G. (2004). A cell-centered second-order accurate finite volume method for convection–diffusion problems on unstructured meshes. Mathematical Models and Methods in Applied Sciences, 14(08), 1235-1260.
-
Bevan, J. (1999). Diving bells through the centuries. South Pacific Underwater Medicine Society Journal, 29 (1). ISSN 0813-1988.
-
Bohm, C. (2014). A Velocity Prediction Procedure for Sailing Yachts Based on Integrated Fully Coupled RANSE-Free-Surface Simulations, Delft.
-
Caponnetto M., Söding H., & Azcueta R. (2003). Motion Simulations for Planing Boats in Waves. Ship Technology Research, 50(4), 182–198. https://doi.org/10.1179/str.2003.50.4.006
-
Carrera, E. V., & Paredes, M. (2020). Analysis and evaluation of the positioning of autonomous underwater vehicles using acoustic signals. In Developments and Advances in Defense and Security: Proceedings of MICRADS 2019 (pp. 411-421). Springer Singapore.
-
Chaplin, J. R., & Teigen, P. (2003). Steady flow past a vertical surface-piercing circular cylinder. Journal of Fluids and Structures, 18(3-4), 271-285.
-
Clement E.P., & Blount D..L. (1963). Resistance tests of a systematic series of planing hull forms. SNAME Trans, 71.
-
Çelik, I.B., Ghia, , Roache, P.J., Freitas, C.J., Coleman, H., & Raad, P.E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME 30:078001-1-4. https://doi.org/10.1115/1.2960953
-
Danışman, D. B. (2016). Ata Nutku Model Deney Tankı Çekme Deneyleri İçin Model İmalat Süreci. GİDB Dergi(07), 49-60.
-
Davidson K.S.M., & Suzrez, A. (1949). Test of Twenty Related Models of V-Bottom Motor Boats EMB Series 50. Report R-47, DTMB. Available at: https://apps.dtic.mil/sti/tr/pdf/AD0224761.pdf
-
Davis, R. H. (1995). Deep Diving and Submarine Operations Part 1 and 2. Siebe Gorman and Co Ltd.
-
Dawson E. (2014) An Investigation into the Effects of Submergence Depth, Speed and Hull Length-to-Diameter Ratio on the near Surface Operation of Conventional Submarines. PhD Thesis, University of Tasmania, AU
-
Delen, C., & Bal, S. (2015). Uncertainty analysis of resistance tests in Ata Nutku ship model Testing Laboratory of Istanbul Technical University. Turkish Journal of Maritime and Marine Sciences, 1(2): 69-88.
-
Delen, C., & Bal, S. (2019). ‘Uncertainty analysis of numerical and experimental resistance tests for ONR Tumblehome’. Sustainable Development and Innovations in Marine Technologies: Proceedings of the 18th International Congress of the Maritime Association of the Mediterranean (IMAM 2019); Sept 9–11; Varna, Bulgaria. CRC Press. p. 142.
-
Dong, K., Wang, X., Zhang D., Liu, L., & Feng, D. (2022) CFD Research on the Hydrodynamic Performance of Submarine Sailing near the Free Surface with Long-Crested Waves. J. Mar. Sci. Eng. https://doi.org/10.3390/jmse10010090
-
Ducrocq, T., Cassan, L., Chorda, J., & Roux, H. (2017). Flow and drag force around a free surface piercing cylinder for environmental applications. Environmental Fluid Mechanics, 17(4), 629-645.
-
Eça, L. ve Hoekstra, M. (2014). A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies, J. Comput. Phys. 262:104-130, https://doi.org/10.1016/j.jcp.2014.01.006.
-
Feldman J. (1979). DTNSRDC revised standard submarine equations of motion, Tech. rep. David W Taylor Naval Ship Research and Development Center, Ship Performance Dept, Bethesda, MD. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA071804.pdf
-
Fridsma G. (1969) A Systematic Study of the Rough Water Performance of Planing Boats. Davidson laboratory, Stevens Institute of Technology (November 1969), Technical Report 1275. Available at: https://apps.dtic.mil/sti/pdfs/AD0708694.pdf
-
Fučík, J., Frank, L., & Stojar, R. (2021). Autonomous systems and cyberspace: Opportunities for the armed forces. In International conference on modelling and simulation for autonomous systems (pp. 440-451). Cham: Springer International Publishing.
-
Gao, T., Wang, Y., Pang, Y., & Cao, J. (2016). Hull shape optimization for autonomous underwater vehicles using CFD. Engineering applications of computational fluid mechanics, 10(1), 599-607.
-
Gertler M., & Hagen G.R. (1967). Standard equations of motion for submarine simulation, Tech. rep. David W Taylor Naval Ship Research and Development Center, Bethesda, MD. Available at: https://apps.dtic.mil/sti/pdfs/AD0653861.pdf
-
Hay, A.D. (1947). Flow about semi-submerged cylinders of finite length, report, 174 pp. Princeton Univ., Princeton, NJ.
-
Hirt, C.W., & Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput. Phys. 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5
-
Hong, H., Chen, X., Wei, S., Shen, G., & Shu, X. (2024, May). Digital Twin System for Condition Monitoring and Control of Unmanned Autonomous Vehicle Powertrain. In International conference on the Efficiency and Performance Engineering Network (pp. 571-578). Cham: Springer Nature Switzerland.
-
Hong, L., Wang, X., & Zhang, D.S. (2024). CFD-based hydrodynamic performance investigation of autonomous underwater vehicles: A survey. Ocean Engineering, 305, 117911.
-
Hosseini A., Tavakoli S., Dashtimanesh . , Sahoo P.K., & Korgesaar M. (2021). Performance prediction of a hard-chine planing hull by employing different CFD models. J. Mar. Sci. Eng. 9 (5), 481. https://doi.org/10.3390/jmse9050481.
-
ITTC. (2011a). Ship models. ITTC – recommended procedures and guidelines.
-
ITTC. (2011b). Recommended procedures and guidelines: practical guidelines for ship CFD, 26th Int. Towing Tank Conf. 2011.
-
ITTC. (2014). General guideline for uncertainty analysis in resistance tests – 7.5-02-02-02’, in International Towing Tank Conference.
-
ITTC. (2017). Recommended Procedures and Guidelines: Uncertainty analysis in CFD verification and validation methodology and procedures. 2017. ITTC - 7.5-03-01-01
-
Jin S., Peng H., Qiu W., Hunter R., & Thompson S. (2023) Numerical simulation of planing hull motions in calm water and waves with overset grid. Ocean Engineering 287, 115858. https://doi.org/10.1016/j.oceaneng.2023.115858
-
Karabulut, U.C., & Barlas B. (2025). Computational Analysis on the Hydrodynamics of a Semi-Submersible Naval Ship. J. Marine Sci. and Appl. (in press).
-
Karabulut, U.C., Barlas, B., & Baykal, M.A. (2024). Desıgn Priorıtization Study For A Semi-Submersible Naval Ship Based On Fast Decision Method. Journal of Naval Sciences and Engineering, 20(1), 3-19.
-
Kawamura, T., Mayer, S., Garapon, A., & Sørensen, L. (2002). Large eddy simulation of a flow past a free surface piercing circular cylinder. J. Fluids Eng., 124(1), 91-101.
-
Kragelund, S., Dobrokhodov, V., Monarrez, A., Hurban, M., & Khol, C. (2013). Adaptive speed control for autonomous surface vessels. In 2013 OCEANS-San Diego (pp. 1-10). IEEE.
-
Lidtke, A. K., Turnock, S. R., & Downes, J. (2017). Hydrodynamic Design of Underwater Gliders Using k-k_L-ω Reynolds Averaged Navier–Stokes Transition Model. IEEE Journal of Oceanic Engineering, 43(2), 356-368.
-
Matveev, K. I. (2022). Modeling of Autonomous Hydrofoil Craft Avoiding Moving Obstacles. In SNAME Maritime Convention (p. D021S012R001). SNAME.
-
Menter, F.R. (1994). Two-equation eddy-viscosity turbulence modelling for engineering applications, AIAA Journal 32(8):1598-1605. https://doi.org/10.2514/3.12149
-
Mirzaei, M., & Taghvaei, H. (2020). A full hydrodynamic consideration in control system performance analysis for an autonomous underwater vehicle. Journal of Intelligent & Robotic Systems, 99, 129-145.
-
Muzaferija, S., & Perie M. (1998). Computation of Free Surface Flows Using Interface-Tracking and Interface-Capturing Methods. In: Mahrenholtz 0., Markiewicz M. (Eds.) Nonlinear Water Wave Interaction. Computational Mechanics Publications, Southampton, Chap. 2
-
Najafi A., Nowruzi H., & Amero M.J. (2020). Hydrodynamic assessment of stepped planing hulls using experiments, Ocean Engineering 217, 107939. https://doi.org/10.1016/j.oceaneng.2020.107939
-
Panda, J. P., Mitra, A., & Warrior, H. V. (2021). A review on the hydrodynamic characteristics of autonomous underwater vehicles. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 235(1), 15-29.
-
Patankar, S.V., & Spalding, D.B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J Heat Mass Tran 15:1787–1806. https://doi.org/10.1016/0017-9310(72)90054-3
-
Payal, M., Dixit, P., Sairam, T. V. M., & Goyal, N. (2021). Robotics, AI, and the IoT in defense systems. AI and IoT‐Based Intelligent Automation in Robotics, 109-128.
-
Rosetti, G.F., Vaz, G., Hoekstra, M., Gonçalves, R.T., & Fujarra, A.L. (2013). CFD calculations for free-surface-piercing low aspect ratio circular cylinder with solution verification and comparison with experiments. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 55416, p. V007T08A056). American Society of Mechanical Engineers.
-
Rypkema, N. R., Fischell, E. M., Forrest, A. L., Benjamin, M. R., & Schmidt, H. (2018). Implementation of a hydrodynamic model-based navigation system for a low-cost AUV fleet. In 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV) (pp. 1-6). IEEE.
-
Savitsky D. (1964). Hydrodynamic design of planing hulls. Mar. Technol. 1, 1. https://doi.org/10.5957/mt1.1964.1.4.71
-
Savitsky D. (1985) Chapter IV: planing craft. Nav. Eng. J. 113–140. https://doi.org/10.1111/j.1559-3584.1985.tb03397.x
-
Savitsky D., & Core J.L. (1980). Re-evaluation of the planing hull form. J. Hydronautics 14(2), 34–47. https://doi.org/10.2514/3.63184
-
Smith N., Crane J., & Summey D. (1978). SDV simulator hydrodynamic coefficients, NCSC rep. TM-231-78, Naval Coastal Systems Center, Panama City, FL.
-
Stern, F., Wilson, RV., Coleman, H.W., & Paterson, E.G. (2001). Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures. J. Fluids Eng., 123(4), 793-802.
-
Sukas O.F., Kinaci O.K., Cakici F., & Gokce M.K. (2017). Hydrodynamic assessment of planing hulls using overset grids. Appl. Ocean Res. 65, 35–46. https://doi.org/10.1016/j.apor.2017.03.015
-
Tavakoli S., Zhang M., Kondratenko A.A., & Hirdaris S. (2024). A review on the hydrodynamics of planing hulls. Ocean Engineering, 303, 117046. https://doi.org/10.1016/j.oceaneng.2024.117046
-
Toxopeus S.L. (2008) Viscous-flow calculations for bare hull DARPA SUBOFF submarine at incidence. Int Shipbuild Prog 55(3):227–251. https://doi.org/10.3233/ISP-2008-0048
-
Van He, N., Tuan, V. N., & Van Hien, N. (2021). Analysis hydrodynamic performance of the autonomous underwater vehicle for a different hull shape. In Regional Conference in Mechanical Manufacturing Engineering (pp. 458-468). Singapore: Springer Nature Singapore.
-
Van Terwisga T.J.C., & Hooft J.P. (1988) Hydrodynamic support in the design of submarines. In: Bicentennial maritime symposium. Sydney, Australia, pp.241–251.
-
Vaz G., Toxopeus S.L., & Holmes S. (2010) Calculation of manoeuvring forces on submarines using two viscous-flow solvers. In: 29th international conference on ocean, offshore and arctic engineering (OMAE), Shanghai, China, OMAE2010-20373. https://doi.org/10.1115/OMAE2010-20373
-
Vitiello L., Mancini S., Niazmand Bilandi R., Dashtimanesh A., De Luca F., & Nappo V. (2022) A comprehensive stepped planing hull systematic series: Part 1 – resistance test. Ocean Engineering 266, 112242. https://doi.org/10.1016/j.oceaneng.2022.112242
-
Wang, H., Zhu, R. C., Huang, S., & Zha, L. (2020). Hydrodynamic analysis of a planing hull in calm water using overset mesh and rigid body motion method. In ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I). ISOPE.
-
Wilcox, D.C. (2006). Turbulence modelling for CFD. Third ed. DCW Industries.
-
Yu, X., Chen, W. N., Hu, X. M., Gu, T., Yuan, H., Zhou, Y., & Zhang, J. (2019). Path planning in multiple-AUV systems for difficult target traveling missions: A hybrid metaheuristic approach. IEEE Transactions on Cognitive and Developmental Systems, 12(3), 561-574.
Su altı ve su üstünde seyir yapabilen hibrit bir otonom deniz platformunun su altı hidrodinamiğinin incelenmesi
Yıl 2025,
Cilt: 8 Sayı: 2, 197 - 216
Utku Cem Karabulut
,
Barış Barlas
,
Şebnem Helvacıoğlu
,
Mehmet Ali Baykal
Öz
Bu çalışma, su altı ve su üstünde seyir yapabilen hibrit bir yarı dalgıç askeri platformun su altındaki hidrodinamik performansını deneysel ve sayısal yöntemlerle kapsamlı bir şekilde incelemekte, otonom askeri deniz aracı tasarımı alanında katkı sunmayı amaçlamaktadır. Model deneyleri İstanbul Teknik Üniversitesi (İTÜ) Ata Nutku Gemi Model Deney Laboratuvarı'nda gerçekleştirilmiş, hesaplamalı akışkanlar dinamiği (HAD) analizleri ise Star CCM+ yazılımı kullanılarak yürütülmüştür. Çalışmada, su altı direnç deneyleri farklı dalış derinliklerinde ve hızlarda yapılmış, sonuçlar deneysel belirsizlik analizleriyle değerlendirilmiştir. HAD sonuçları, deneysel verilerle karşılaştırılarak doğrulama sağlanmış ve genel olarak %5’in altında farklar elde edilmiştir. Bulgular, su altı performansının dalış derinliğiyle doğrudan ilişkili olduğunu ve yüzeye yakın operasyonlarda hidrodinamik etkilerin arttığını göstermektedir. Bu çalışma, hibrit askeri gemilerin tasarım optimizasyonuna yönelik önemli veriler sunarken, HAD yöntemlerinin bu tür analizlerde etkinliğini de ortaya koymaktadır. Gelecekteki araştırmalar, dinamik manevra kabiliyeti ve çevresel etkilerin değerlendirilmesine odaklanacaktır.
Destekleyen Kurum
İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Teşekkür
Bu çalışma, birinci yazarın İstanbul Teknik Üniversitesi Gemi İnşaatı ve Deniz Bilimleri Bölümü’nde yürütmekte olduğu doktora çalışmasının bir parçası olup, İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (Proje No: 45756) tarafından kısmen desteklenmiştir. Yazarlar, deneysel çalışmalar sırasında sağladıkları değerli katkılardan dolayı Prof. Dr. Devrim Bülent Danışman’a ve İTÜ Ata Nutku Gemi Model Deney Laboratuvarı personeline teşekkürlerini sunar.
Kaynakça
-
Alquwayzani, A. A., & Albuali, A. A. (2024). A Systematic Literature Review of Zero Trust Architecture for Military UAV Security Systems. IEEE Access.
-
Amiri M.M., Esperança P.T., Vitola M.A., & Sphaier S.H. (2018). How does the free surface affect the hydrodynamics of a shallowly submerged submarine? Appl. Ocean Res. 76:34–50. https://doi.org/10.1016/j.apor.2018.04.008
-
Amiri M.M., Sphaier S.H., Vitola M.A., & Esperança P.T. (2019) URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift. Appl. Ocean Res. 84:192–205. https://doi.org/10.1016/j.apor.2019.01.012
-
Amory, A., & Maehle, E. (2018). Modelling and CFD simulation of a micro autonomous underwater vehicle SEMBIO. In OCEANS 2018 MTS/IEEE Charleston (pp. 1-6). IEEE.
-
Benitz, M.A., Carlson, D.W., Seyed-Aghazadeh, B., Modarres-Sadeghi, Y., Lackner, M.A., & Schmidt, D.P. (2016). CFD simulations and experimental measurements of flow past free-surface piercing, finite length cylinders with varying aspect ratios. Computers & Fluids, 136, 247-259.
-
Bertolazzi, E., & Manzini, G. (2004). A cell-centered second-order accurate finite volume method for convection–diffusion problems on unstructured meshes. Mathematical Models and Methods in Applied Sciences, 14(08), 1235-1260.
-
Bevan, J. (1999). Diving bells through the centuries. South Pacific Underwater Medicine Society Journal, 29 (1). ISSN 0813-1988.
-
Bohm, C. (2014). A Velocity Prediction Procedure for Sailing Yachts Based on Integrated Fully Coupled RANSE-Free-Surface Simulations, Delft.
-
Caponnetto M., Söding H., & Azcueta R. (2003). Motion Simulations for Planing Boats in Waves. Ship Technology Research, 50(4), 182–198. https://doi.org/10.1179/str.2003.50.4.006
-
Carrera, E. V., & Paredes, M. (2020). Analysis and evaluation of the positioning of autonomous underwater vehicles using acoustic signals. In Developments and Advances in Defense and Security: Proceedings of MICRADS 2019 (pp. 411-421). Springer Singapore.
-
Chaplin, J. R., & Teigen, P. (2003). Steady flow past a vertical surface-piercing circular cylinder. Journal of Fluids and Structures, 18(3-4), 271-285.
-
Clement E.P., & Blount D..L. (1963). Resistance tests of a systematic series of planing hull forms. SNAME Trans, 71.
-
Çelik, I.B., Ghia, , Roache, P.J., Freitas, C.J., Coleman, H., & Raad, P.E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME 30:078001-1-4. https://doi.org/10.1115/1.2960953
-
Danışman, D. B. (2016). Ata Nutku Model Deney Tankı Çekme Deneyleri İçin Model İmalat Süreci. GİDB Dergi(07), 49-60.
-
Davidson K.S.M., & Suzrez, A. (1949). Test of Twenty Related Models of V-Bottom Motor Boats EMB Series 50. Report R-47, DTMB. Available at: https://apps.dtic.mil/sti/tr/pdf/AD0224761.pdf
-
Davis, R. H. (1995). Deep Diving and Submarine Operations Part 1 and 2. Siebe Gorman and Co Ltd.
-
Dawson E. (2014) An Investigation into the Effects of Submergence Depth, Speed and Hull Length-to-Diameter Ratio on the near Surface Operation of Conventional Submarines. PhD Thesis, University of Tasmania, AU
-
Delen, C., & Bal, S. (2015). Uncertainty analysis of resistance tests in Ata Nutku ship model Testing Laboratory of Istanbul Technical University. Turkish Journal of Maritime and Marine Sciences, 1(2): 69-88.
-
Delen, C., & Bal, S. (2019). ‘Uncertainty analysis of numerical and experimental resistance tests for ONR Tumblehome’. Sustainable Development and Innovations in Marine Technologies: Proceedings of the 18th International Congress of the Maritime Association of the Mediterranean (IMAM 2019); Sept 9–11; Varna, Bulgaria. CRC Press. p. 142.
-
Dong, K., Wang, X., Zhang D., Liu, L., & Feng, D. (2022) CFD Research on the Hydrodynamic Performance of Submarine Sailing near the Free Surface with Long-Crested Waves. J. Mar. Sci. Eng. https://doi.org/10.3390/jmse10010090
-
Ducrocq, T., Cassan, L., Chorda, J., & Roux, H. (2017). Flow and drag force around a free surface piercing cylinder for environmental applications. Environmental Fluid Mechanics, 17(4), 629-645.
-
Eça, L. ve Hoekstra, M. (2014). A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies, J. Comput. Phys. 262:104-130, https://doi.org/10.1016/j.jcp.2014.01.006.
-
Feldman J. (1979). DTNSRDC revised standard submarine equations of motion, Tech. rep. David W Taylor Naval Ship Research and Development Center, Ship Performance Dept, Bethesda, MD. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA071804.pdf
-
Fridsma G. (1969) A Systematic Study of the Rough Water Performance of Planing Boats. Davidson laboratory, Stevens Institute of Technology (November 1969), Technical Report 1275. Available at: https://apps.dtic.mil/sti/pdfs/AD0708694.pdf
-
Fučík, J., Frank, L., & Stojar, R. (2021). Autonomous systems and cyberspace: Opportunities for the armed forces. In International conference on modelling and simulation for autonomous systems (pp. 440-451). Cham: Springer International Publishing.
-
Gao, T., Wang, Y., Pang, Y., & Cao, J. (2016). Hull shape optimization for autonomous underwater vehicles using CFD. Engineering applications of computational fluid mechanics, 10(1), 599-607.
-
Gertler M., & Hagen G.R. (1967). Standard equations of motion for submarine simulation, Tech. rep. David W Taylor Naval Ship Research and Development Center, Bethesda, MD. Available at: https://apps.dtic.mil/sti/pdfs/AD0653861.pdf
-
Hay, A.D. (1947). Flow about semi-submerged cylinders of finite length, report, 174 pp. Princeton Univ., Princeton, NJ.
-
Hirt, C.W., & Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput. Phys. 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5
-
Hong, H., Chen, X., Wei, S., Shen, G., & Shu, X. (2024, May). Digital Twin System for Condition Monitoring and Control of Unmanned Autonomous Vehicle Powertrain. In International conference on the Efficiency and Performance Engineering Network (pp. 571-578). Cham: Springer Nature Switzerland.
-
Hong, L., Wang, X., & Zhang, D.S. (2024). CFD-based hydrodynamic performance investigation of autonomous underwater vehicles: A survey. Ocean Engineering, 305, 117911.
-
Hosseini A., Tavakoli S., Dashtimanesh . , Sahoo P.K., & Korgesaar M. (2021). Performance prediction of a hard-chine planing hull by employing different CFD models. J. Mar. Sci. Eng. 9 (5), 481. https://doi.org/10.3390/jmse9050481.
-
ITTC. (2011a). Ship models. ITTC – recommended procedures and guidelines.
-
ITTC. (2011b). Recommended procedures and guidelines: practical guidelines for ship CFD, 26th Int. Towing Tank Conf. 2011.
-
ITTC. (2014). General guideline for uncertainty analysis in resistance tests – 7.5-02-02-02’, in International Towing Tank Conference.
-
ITTC. (2017). Recommended Procedures and Guidelines: Uncertainty analysis in CFD verification and validation methodology and procedures. 2017. ITTC - 7.5-03-01-01
-
Jin S., Peng H., Qiu W., Hunter R., & Thompson S. (2023) Numerical simulation of planing hull motions in calm water and waves with overset grid. Ocean Engineering 287, 115858. https://doi.org/10.1016/j.oceaneng.2023.115858
-
Karabulut, U.C., & Barlas B. (2025). Computational Analysis on the Hydrodynamics of a Semi-Submersible Naval Ship. J. Marine Sci. and Appl. (in press).
-
Karabulut, U.C., Barlas, B., & Baykal, M.A. (2024). Desıgn Priorıtization Study For A Semi-Submersible Naval Ship Based On Fast Decision Method. Journal of Naval Sciences and Engineering, 20(1), 3-19.
-
Kawamura, T., Mayer, S., Garapon, A., & Sørensen, L. (2002). Large eddy simulation of a flow past a free surface piercing circular cylinder. J. Fluids Eng., 124(1), 91-101.
-
Kragelund, S., Dobrokhodov, V., Monarrez, A., Hurban, M., & Khol, C. (2013). Adaptive speed control for autonomous surface vessels. In 2013 OCEANS-San Diego (pp. 1-10). IEEE.
-
Lidtke, A. K., Turnock, S. R., & Downes, J. (2017). Hydrodynamic Design of Underwater Gliders Using k-k_L-ω Reynolds Averaged Navier–Stokes Transition Model. IEEE Journal of Oceanic Engineering, 43(2), 356-368.
-
Matveev, K. I. (2022). Modeling of Autonomous Hydrofoil Craft Avoiding Moving Obstacles. In SNAME Maritime Convention (p. D021S012R001). SNAME.
-
Menter, F.R. (1994). Two-equation eddy-viscosity turbulence modelling for engineering applications, AIAA Journal 32(8):1598-1605. https://doi.org/10.2514/3.12149
-
Mirzaei, M., & Taghvaei, H. (2020). A full hydrodynamic consideration in control system performance analysis for an autonomous underwater vehicle. Journal of Intelligent & Robotic Systems, 99, 129-145.
-
Muzaferija, S., & Perie M. (1998). Computation of Free Surface Flows Using Interface-Tracking and Interface-Capturing Methods. In: Mahrenholtz 0., Markiewicz M. (Eds.) Nonlinear Water Wave Interaction. Computational Mechanics Publications, Southampton, Chap. 2
-
Najafi A., Nowruzi H., & Amero M.J. (2020). Hydrodynamic assessment of stepped planing hulls using experiments, Ocean Engineering 217, 107939. https://doi.org/10.1016/j.oceaneng.2020.107939
-
Panda, J. P., Mitra, A., & Warrior, H. V. (2021). A review on the hydrodynamic characteristics of autonomous underwater vehicles. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 235(1), 15-29.
-
Patankar, S.V., & Spalding, D.B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J Heat Mass Tran 15:1787–1806. https://doi.org/10.1016/0017-9310(72)90054-3
-
Payal, M., Dixit, P., Sairam, T. V. M., & Goyal, N. (2021). Robotics, AI, and the IoT in defense systems. AI and IoT‐Based Intelligent Automation in Robotics, 109-128.
-
Rosetti, G.F., Vaz, G., Hoekstra, M., Gonçalves, R.T., & Fujarra, A.L. (2013). CFD calculations for free-surface-piercing low aspect ratio circular cylinder with solution verification and comparison with experiments. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 55416, p. V007T08A056). American Society of Mechanical Engineers.
-
Rypkema, N. R., Fischell, E. M., Forrest, A. L., Benjamin, M. R., & Schmidt, H. (2018). Implementation of a hydrodynamic model-based navigation system for a low-cost AUV fleet. In 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV) (pp. 1-6). IEEE.
-
Savitsky D. (1964). Hydrodynamic design of planing hulls. Mar. Technol. 1, 1. https://doi.org/10.5957/mt1.1964.1.4.71
-
Savitsky D. (1985) Chapter IV: planing craft. Nav. Eng. J. 113–140. https://doi.org/10.1111/j.1559-3584.1985.tb03397.x
-
Savitsky D., & Core J.L. (1980). Re-evaluation of the planing hull form. J. Hydronautics 14(2), 34–47. https://doi.org/10.2514/3.63184
-
Smith N., Crane J., & Summey D. (1978). SDV simulator hydrodynamic coefficients, NCSC rep. TM-231-78, Naval Coastal Systems Center, Panama City, FL.
-
Stern, F., Wilson, RV., Coleman, H.W., & Paterson, E.G. (2001). Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures. J. Fluids Eng., 123(4), 793-802.
-
Sukas O.F., Kinaci O.K., Cakici F., & Gokce M.K. (2017). Hydrodynamic assessment of planing hulls using overset grids. Appl. Ocean Res. 65, 35–46. https://doi.org/10.1016/j.apor.2017.03.015
-
Tavakoli S., Zhang M., Kondratenko A.A., & Hirdaris S. (2024). A review on the hydrodynamics of planing hulls. Ocean Engineering, 303, 117046. https://doi.org/10.1016/j.oceaneng.2024.117046
-
Toxopeus S.L. (2008) Viscous-flow calculations for bare hull DARPA SUBOFF submarine at incidence. Int Shipbuild Prog 55(3):227–251. https://doi.org/10.3233/ISP-2008-0048
-
Van He, N., Tuan, V. N., & Van Hien, N. (2021). Analysis hydrodynamic performance of the autonomous underwater vehicle for a different hull shape. In Regional Conference in Mechanical Manufacturing Engineering (pp. 458-468). Singapore: Springer Nature Singapore.
-
Van Terwisga T.J.C., & Hooft J.P. (1988) Hydrodynamic support in the design of submarines. In: Bicentennial maritime symposium. Sydney, Australia, pp.241–251.
-
Vaz G., Toxopeus S.L., & Holmes S. (2010) Calculation of manoeuvring forces on submarines using two viscous-flow solvers. In: 29th international conference on ocean, offshore and arctic engineering (OMAE), Shanghai, China, OMAE2010-20373. https://doi.org/10.1115/OMAE2010-20373
-
Vitiello L., Mancini S., Niazmand Bilandi R., Dashtimanesh A., De Luca F., & Nappo V. (2022) A comprehensive stepped planing hull systematic series: Part 1 – resistance test. Ocean Engineering 266, 112242. https://doi.org/10.1016/j.oceaneng.2022.112242
-
Wang, H., Zhu, R. C., Huang, S., & Zha, L. (2020). Hydrodynamic analysis of a planing hull in calm water using overset mesh and rigid body motion method. In ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I). ISOPE.
-
Wilcox, D.C. (2006). Turbulence modelling for CFD. Third ed. DCW Industries.
-
Yu, X., Chen, W. N., Hu, X. M., Gu, T., Yuan, H., Zhou, Y., & Zhang, J. (2019). Path planning in multiple-AUV systems for difficult target traveling missions: A hybrid metaheuristic approach. IEEE Transactions on Cognitive and Developmental Systems, 12(3), 561-574.