Araştırma Makalesi
BibTex RIS Kaynak Göster

Hemşirelik Öğrencilerinde Yapay Zeka Hazırbulunuşluk ve Yapay Zeka Kaygı Düzeyleri Arasındaki İlişkinin İncelenmesi

Yıl 2026, Cilt: 19 Sayı: 1, 157 - 169, 15.01.2026
https://doi.org/10.46483/jnef.1532491

Öz

Giriş: Hızla gelişen teknolojiler sayesinde sağlık alanında yapay zeka kullanımında hızla bir artış oldu. Yapay zekaya uyum sağlayacak sağlık profesyonellerinin eğitimi önem kazandı.
Amaç: Hemşirelik öğrencilerinde yapay zeka hazırbulunuşluk ve yapay zeka kaygı düzeyleri arasındaki ilişkinin incelenmesi amaçlanmıştır.
Yöntem: Bu çalışma tanımlayıcı-ilişki arayıcı nitelikte olup, veriler Mayıs-Haziran 2024 tarihleri arasında yüz yüze uygulanan anket formu ile 176 hemşirelik öğrencisinden elde edildi. Çalışmada “Demografik Veri Toplama Formu”, “Yapay Zeka Kaygı Ölçeği” ve “Tıbbi Yapay Zeka Hazırbulunuşluk Ölçeği” kullanıldı. Verilerin analizinde, frekans, ortalama, yüzde analizleri, doğrusal regresyon ve pearson korelasyon, bağımsız gruplar t-testi, tek yönlü varyans analizi (Anova) ve post hoc (Tukey, LSD) analizleri kullanıldı.
Bulgular: Katılımcıların %69,3’ü kadın, %30,7’si erkek olup, kadın öğrencilerin yapay zeka kaygı puanı (45,336 ± 13,747) erkek öğrencilere (38,019 ± 16,203) kıyasla daha yüksek bulunmuş olup, bu fark istatistiksel olarak anlamlıdır (t = 3,079, p = ,002). Regresyon analizi sonuçlarına göre, tıbbi yapay zeka hazırbulunuşluğu, yapay zeka kaygısını anlamlı ve negatif yönde etkilemektedir (β = -,150, p < ,05). Bu bulgu, tıbbi yapay zeka hazırbulunuşluğu arttıkça, yapay zeka kaygısının azaldığını göstermektedir.
Sonuç: Bu çalışmada hemşirelik öğrencilerinin yapay zeka kaygı ve yapay zeka hazırbulunuşluk düzeyleri orta düzeyde bulunmuştur. Hemşirelik lisans eğitimi müfredatı güncellenmeli ve müfredata sağlıkta teknoloji/yapay zekâ gibi dersler/konular eklenmeli; öğrenciler yapay zekânın kullanımı, olumlu yönleri ve avantajları hakkında bilgilendirilmeli ve bu konudaki endişeleri giderilmelidir.

Etik Beyan

Etik bir sorun bulunmamaktadır.

Destekleyen Kurum

Tubitak 2209-A

Proje Numarası

1919B012336897

Kaynakça

  • Ahmed, Z., Bhinder, K. K., Tariq, A., Tahir, M. J., Mehmood, Q., Tabassum, M. S., ... & Yousaf, Z. (2022). Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Pakistan: A cross- sectional online survey. Annals of Medicine and Surgery, 76, 103493.
  • Akkaya, B., Özkan, A. & Özkan, H. (2021). Yapay Zeka Kaygı (YZK) Ölçeği: Türkçeye uyarlama, geçerlik ve güvenirlik çalışması. Alanya Akademik Bakış, 5(2), 1125-1146.
  • Buchanan, C., Howitt, M. L., Wilson, R., Booth, R. G., Risling, T., & Bamford, M. (2021). Predicted influences of artificial intelligence on nursing education: Scoping review. JMIR nursing, 4(1), e23933.
  • Clancy, T. R. (2020). Artificial intelligence and nursing: The future is now. JONA: The Journal of Nursing Administration, 50(3), 125-127.
  • Chai, C.S.; Lin, P.-Y.; Jong, M.S.Y.; Dai, Y.; Chiu, T.K.F.; Qin, J.J.(2020). Perceptions of and behavioral intentions towards learning artificial intelligence in primary school students. Educ. Technol. Soc., in press. 7.
  • Chiu, T.K.F.; Chai, C.S. (2020). Sustainable Curriculum Planning for Artificial Intelligence Education: A Self- Determination theory Perspective. Sustainability, 12, 5568.
  • Çoban, N., Eryiğit, T., Dülcek, S., Beydağ, D., & Ortabağ, T (2022). Hemşirelik Mesleğinde Yapay Zeka Ve Robot Teknolojilerinin Yeri. Fenerbahçe Üniversitesi Sağlık Bilimleri Dergisi, 2(1), 378-385.
  • Deniz, S. S. (2024). Yapay zekâ kaygısının incelenmesine ilişkin bir araştırma. Social Mentality and Researcher Thinkers Journal (Smart Journal), 8(63), 1675-1677.
  • Filiz, E., Güzel, Ş., & Şengül,A. (2022). Sağlık profesyonellerinin yapay zekâ kaygı durumlarının incelenmesi. Journal of Academic Value Studies, 8(1), 47-55.
  • García, J. A., & Méndez, A. (2021). Preparing for AI: Educational Approaches to Enhance AI Readiness and Reduce Anxiety. International Journal of Education and Development Using ICT, 17(2), 56-71.
  • Güven, G. Ö., Yilmaz, Ş., & Inceoğlu, F. (2024). Determining medical students' anxiety and readiness levels about artificial intelligence. Heliyon, 10(4).
  • Karaca, O., Çalışkan, S.A. & Demir, K. Medical artificial intelligence readiness scale for medical students (MAIRS-MS) – development, validity and reliability study. BMC Med Educ 21, 112 (2021).
  • Kalaycı, Ş. (2006) SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri, Ankara: Asil Yayın Dağıtım Ltd. Şti, s.116.
  • Labrague, L. J., Aguilar-Rosales, R., Yboa, B. C., & Sabio, J. B. (2023). Factors influencing student nurses' readiness to adopt artificial intelligence (AI) in their studies and their perceived barriers to accessing AI technology: A cross-sectional study. Nurse Education Today, 130, 105945.
  • Lukić, A., Kudelić, N., Antičević, V., Lazić-Mosler, E., Glunčić, V., Hren, D., & Lukić, I. K. (2023). First-year nursing students’ attitudes towards artificial intelligence: Cross-sectional multi-center study. Nurse Education in Practice, 71, 103735.
  • Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) Revolution: Its Impact on Society and Firms. Futures 2017, 90, 46–60.
  • Mcallister M, Kellenbourn K, Wood D. (2021). The robots are here, but are nurse educators prepared? Collegian. 28(2):230‐235.
  • Menekli, T., Şentürk, S. (2022). The Relatıonshıp Between Artıfıcıal Intellıgence Concerns And Perceıved Spırıtual Care In Internal Medıcıne Nurses. YOBÜ Sağlık Bilimleri Fakültesi Dergisi, 3(2), 210-218.
  • Risling T, Low C. (2019). Advocating for safe, quality and just care: what nursing leaders need to know about artificial intelligence in healthcare delivery. Nurs Leadersh. 32(2):31‐45.
  • Sarman, Abdullah, and Suat Tuncay. "Attitudes and anxiety levels of nursing students toward artificial intelligence." Teaching and Learning in Nursing (2024).
  • Smith, L., & Jones, P. (2022). Cognitive Factors and AI Anxiety: A Study on University Students. Computers & Education, 174, 104310.
  • Swed, S., Alibrahim, H., Elkalagi, N. K. H., Nasif, M. N., Rais, M. A., Nashwan, A. J., ... & Shoib, S. (2022). Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Syria: a cross- sectional online survey. Frontiers in Artificial Intelligence, 5, 1011524.
  • Swan, B.A. (2021). Assessing the knowledge and attitudes of registered nurses about Artificial intelligence in nursing and health care. Nurs. Econ. 39 (3).
  • Tabachnick and Fidell, 2013 B.G. Tabachnick, L.S. Fidell Using Multivariate Statistics (sixth ed.) Pearson, Boston (2013)
  • Tc Sağlık Bakanlığı 2023 Performans Programı. https://sgb.saglik.gov.tr/Eklenti/44984/0/2023performansprogramiv5pdf.pdf? _tag1=C91FBCC139F732CD9394130B060E2E611698AB94
  • Uçar, M., Çapuk, H., & Yiğit, M. F. (2024). The relationship between artificial intelligence anxiety and unemployment anxiety among university students. WORK, 0(0).
  • Zhang, Y., Dafoe, A., & Dafoe, H. (2020). AI Anxiety: Factors and Mitigations. Journal of Artificial Intelligence Research, 69, 341-366.
  • Wang, Y. Y., & Wang, Y. S. (2019). Development and validation of an artificial intelligence anxiety scale: an initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619– 634. https://doi.org/10.1080/10494820.2019.1674887
  • Williams, S., & Thomas, K. (2021). The Role of Cognitive Preparation in Reducing AI Anxiety Among Students. Educational Technology Research and Development, 69, 853-872.
  • Woolf, B.; Lane, H.; Chaudhri, V.; Kolodner, J. AI Grand (2013). Challenges for Education. AI Mag., 34, 66–84. .
  • Yigit D, Acikgoz A. (2024). Evaluation of future nurses' knowledge, attitudes and anxiety levels about artificial intelligence applications. J Eval Clin Pract. 30: 1319-1326

Investigation of the Relationship Between Artificial Intelligence Readiness and Artificial Intelligence Anxiety Levels in Nursing Students

Yıl 2026, Cilt: 19 Sayı: 1, 157 - 169, 15.01.2026
https://doi.org/10.46483/jnef.1532491

Öz

Objective: Artificial intelligence and robot technologies in the field of health and nursing practices are a new concept and it is known to have a high potential. For this reason, it is important for nursing students to be prepared for artificial intelligence and not to have problems in their education. In our study, it was aimed to examine the relationship between artificial intelligence readiness and artificial intelligence anxiety levels in nursing students.
Methods: This study was descriptive-correlational in nature and was carried out with 176 students between May-June 2024 with a face-to-face questionnaire. “Demographic data Collection Form”, “Artificial Intelligence (AI) Anxiety Scale” and “Medical Artificial Intelligence (MAI) Readiness Scale” were used in the study. In the analysis of data, frequency, mean, percentage analyses, linear regression and Pearson correlation, independent groups t-test, one-way analysis of variance (ANOVA) and post hoc (Tukey, LSD) analyses were used.
Results: 69.3% of participants were female, 30.7% are male, and female students' artificial intelligence anxiety scores (45.336 ± 13.747) were found to be higher than those of male students (38.019 ± 16.203), and this difference is statistically significant (t = 3.079, p = .002). This difference was statistically significant (t = 3.079, p = .002). According to the regression analysis results, medical AI readiness significantly and negatively affects AI anxiety (β = -.150, p < .05). This finding indicates that as MAI readiness increases, AI anxiety decreases.
Conclusion: In our study, artificial intelligence anxiety and artificial intelligence readiness levels of nursing students were found to be moderate. Nursing undergraduate education curriculum should be updated and courses such as technology/artificial intelligence in health should be added to the curriculum; students should be informed about the use, positive aspects and advantages of artificial intelligence and their concerns about this issue should be eliminated.

Proje Numarası

1919B012336897

Kaynakça

  • Ahmed, Z., Bhinder, K. K., Tariq, A., Tahir, M. J., Mehmood, Q., Tabassum, M. S., ... & Yousaf, Z. (2022). Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Pakistan: A cross- sectional online survey. Annals of Medicine and Surgery, 76, 103493.
  • Akkaya, B., Özkan, A. & Özkan, H. (2021). Yapay Zeka Kaygı (YZK) Ölçeği: Türkçeye uyarlama, geçerlik ve güvenirlik çalışması. Alanya Akademik Bakış, 5(2), 1125-1146.
  • Buchanan, C., Howitt, M. L., Wilson, R., Booth, R. G., Risling, T., & Bamford, M. (2021). Predicted influences of artificial intelligence on nursing education: Scoping review. JMIR nursing, 4(1), e23933.
  • Clancy, T. R. (2020). Artificial intelligence and nursing: The future is now. JONA: The Journal of Nursing Administration, 50(3), 125-127.
  • Chai, C.S.; Lin, P.-Y.; Jong, M.S.Y.; Dai, Y.; Chiu, T.K.F.; Qin, J.J.(2020). Perceptions of and behavioral intentions towards learning artificial intelligence in primary school students. Educ. Technol. Soc., in press. 7.
  • Chiu, T.K.F.; Chai, C.S. (2020). Sustainable Curriculum Planning for Artificial Intelligence Education: A Self- Determination theory Perspective. Sustainability, 12, 5568.
  • Çoban, N., Eryiğit, T., Dülcek, S., Beydağ, D., & Ortabağ, T (2022). Hemşirelik Mesleğinde Yapay Zeka Ve Robot Teknolojilerinin Yeri. Fenerbahçe Üniversitesi Sağlık Bilimleri Dergisi, 2(1), 378-385.
  • Deniz, S. S. (2024). Yapay zekâ kaygısının incelenmesine ilişkin bir araştırma. Social Mentality and Researcher Thinkers Journal (Smart Journal), 8(63), 1675-1677.
  • Filiz, E., Güzel, Ş., & Şengül,A. (2022). Sağlık profesyonellerinin yapay zekâ kaygı durumlarının incelenmesi. Journal of Academic Value Studies, 8(1), 47-55.
  • García, J. A., & Méndez, A. (2021). Preparing for AI: Educational Approaches to Enhance AI Readiness and Reduce Anxiety. International Journal of Education and Development Using ICT, 17(2), 56-71.
  • Güven, G. Ö., Yilmaz, Ş., & Inceoğlu, F. (2024). Determining medical students' anxiety and readiness levels about artificial intelligence. Heliyon, 10(4).
  • Karaca, O., Çalışkan, S.A. & Demir, K. Medical artificial intelligence readiness scale for medical students (MAIRS-MS) – development, validity and reliability study. BMC Med Educ 21, 112 (2021).
  • Kalaycı, Ş. (2006) SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri, Ankara: Asil Yayın Dağıtım Ltd. Şti, s.116.
  • Labrague, L. J., Aguilar-Rosales, R., Yboa, B. C., & Sabio, J. B. (2023). Factors influencing student nurses' readiness to adopt artificial intelligence (AI) in their studies and their perceived barriers to accessing AI technology: A cross-sectional study. Nurse Education Today, 130, 105945.
  • Lukić, A., Kudelić, N., Antičević, V., Lazić-Mosler, E., Glunčić, V., Hren, D., & Lukić, I. K. (2023). First-year nursing students’ attitudes towards artificial intelligence: Cross-sectional multi-center study. Nurse Education in Practice, 71, 103735.
  • Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) Revolution: Its Impact on Society and Firms. Futures 2017, 90, 46–60.
  • Mcallister M, Kellenbourn K, Wood D. (2021). The robots are here, but are nurse educators prepared? Collegian. 28(2):230‐235.
  • Menekli, T., Şentürk, S. (2022). The Relatıonshıp Between Artıfıcıal Intellıgence Concerns And Perceıved Spırıtual Care In Internal Medıcıne Nurses. YOBÜ Sağlık Bilimleri Fakültesi Dergisi, 3(2), 210-218.
  • Risling T, Low C. (2019). Advocating for safe, quality and just care: what nursing leaders need to know about artificial intelligence in healthcare delivery. Nurs Leadersh. 32(2):31‐45.
  • Sarman, Abdullah, and Suat Tuncay. "Attitudes and anxiety levels of nursing students toward artificial intelligence." Teaching and Learning in Nursing (2024).
  • Smith, L., & Jones, P. (2022). Cognitive Factors and AI Anxiety: A Study on University Students. Computers & Education, 174, 104310.
  • Swed, S., Alibrahim, H., Elkalagi, N. K. H., Nasif, M. N., Rais, M. A., Nashwan, A. J., ... & Shoib, S. (2022). Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Syria: a cross- sectional online survey. Frontiers in Artificial Intelligence, 5, 1011524.
  • Swan, B.A. (2021). Assessing the knowledge and attitudes of registered nurses about Artificial intelligence in nursing and health care. Nurs. Econ. 39 (3).
  • Tabachnick and Fidell, 2013 B.G. Tabachnick, L.S. Fidell Using Multivariate Statistics (sixth ed.) Pearson, Boston (2013)
  • Tc Sağlık Bakanlığı 2023 Performans Programı. https://sgb.saglik.gov.tr/Eklenti/44984/0/2023performansprogramiv5pdf.pdf? _tag1=C91FBCC139F732CD9394130B060E2E611698AB94
  • Uçar, M., Çapuk, H., & Yiğit, M. F. (2024). The relationship between artificial intelligence anxiety and unemployment anxiety among university students. WORK, 0(0).
  • Zhang, Y., Dafoe, A., & Dafoe, H. (2020). AI Anxiety: Factors and Mitigations. Journal of Artificial Intelligence Research, 69, 341-366.
  • Wang, Y. Y., & Wang, Y. S. (2019). Development and validation of an artificial intelligence anxiety scale: an initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619– 634. https://doi.org/10.1080/10494820.2019.1674887
  • Williams, S., & Thomas, K. (2021). The Role of Cognitive Preparation in Reducing AI Anxiety Among Students. Educational Technology Research and Development, 69, 853-872.
  • Woolf, B.; Lane, H.; Chaudhri, V.; Kolodner, J. AI Grand (2013). Challenges for Education. AI Mag., 34, 66–84. .
  • Yigit D, Acikgoz A. (2024). Evaluation of future nurses' knowledge, attitudes and anxiety levels about artificial intelligence applications. J Eval Clin Pract. 30: 1319-1326
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hemşirelik Eğitimi, Hemşirelik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Suna Uysal Yalçın

Resul Solhan

Proje Numarası 1919B012336897
Gönderilme Tarihi 13 Ağustos 2024
Kabul Tarihi 9 Aralık 2025
Yayımlanma Tarihi 15 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 19 Sayı: 1

Kaynak Göster

APA Uysal Yalçın, S., & Solhan, R. (2026). Hemşirelik Öğrencilerinde Yapay Zeka Hazırbulunuşluk ve Yapay Zeka Kaygı Düzeyleri Arasındaki İlişkinin İncelenmesi. Etkili Hemşirelik Dergisi, 19(1), 157-169. https://doi.org/10.46483/jnef.1532491

Etkili Hemşirelik Dergisi ULAKBİM Türk Tıp Dizini, Türk Medline, Türkiye Atıf Dizini, Şubat 2021 tarihinden beri EBSCO Host ve 26 Ekim 2021 tarihinden itibaren DOAJ  14 Kasım 2022 tarihinden beri SCOPUS tarafından indekslenmektedir.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi
https://kutuphane.deu.edu.tr/yayinevi/

Dergi İletişim Bilgileri Sayfası
https://dergipark.org.tr/tr/pub/jnef/contacts

Etkili Hemşirelik DergisiDergisi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanslanmıştır.