Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF SAFETY MECHANISMS IN THE MORTAR FUZES

Yıl 2019, Cilt: 2 Sayı: 2, 120 - 128, 31.12.2019

Öz

In
the international arena, the defense industry, which is one of the main factors
determining the economic and political power of the countries, is constantly in
need of change, innovation and modernization in parallel with the technological
developments in the world. Our country, which is open to multi-faceted threats
in terms of its geopolitical and geostrategic position, must reach a military
power with the ability and ability to support the national security policy and
develop its military power in accordance with the requirements of the era. In
line with this importance and purpose, the reduction and increases in time,
spin and distance are of great importance when the arming time and spin of the
safety arming mechanisms used in military-critical rifle and smoothbore
ammunition fuzes are fully determined and necessary.
The
subsystems of the fuzes, which are used in ammunition of large and medium caliber,
which are called as the first firing system of ammunition; dynamic movements in
the internal mechanisms of the fuzes, which provide the critical balance
between safety and functionality, are investigated. These dynamic movements are
the resultant function of the inertia forces of the ammunition at the time of
the firing and the centrifugal forces that the barrel's groove sets impart to
the ammunition. The output of this dynamic movement is a safety parameter which
is called as front of barrel safety in ammunition, which ensures that the
weapon system and personnel remain safe in all kinds of negative scenarios
during shooting. In this article, the effects of the geometries of the gearing
systems on the safety parameters on the fuzes are discussed.

The pallet-wheel pair used in mechanical fuzes; They slow down the movement of
the gear system, delaying the detonator on the rotor to come under the firing
pin, thereby extending the safety distance to the front of the barrel. The
motion wheel and the pallet pair dampen the effects of high rotation and
inertial forces and act as brakes. 
In this
study, the effects of contact points of the pallet and the escape wheel to the
arming time that affects muzzle safety distance were investigated.  Pallet and the escape wheel are situated in
the fuze safety and arming device that provides the security of the armed
forces personnel and their equipment by preventing the function of the fuze
from stockpile to safety seperation sequence. In this experimental study, different
radius were applied to the pallet contact points in the smoothbore mortar fuzes
in order to investigate arming time differencies.
As
a result of this study, it has become a guide for the revisions to be made on pallet
and wheel pair which are crititic in terms of installation time and front
barrel safety in our existing mechanical impact mortar fuzes and new fuze
designs. Integrating the revisions to the safety arming mechanism will be of
great importance in terms of safety and security. As a result of the studies,
it has been observed that as the contact point radius of the pallet increases,
the installation time decreases inversely, ie the safety distance of the front
of the barrel decreases. The determination of the net determination of the
duration of the establishment and, where necessary, the shortening of time and
distance are of great importance.
As result, it was concluded that the increase
in the contact radius of the pallet reduces the arming time, which led the
muzzle safety distance to decrease.
In addition, this work
is of great importance in order to prevent any fatal and wounded accident of
Turkish Armed Forces and Security Forces with mortar ammunition.

Kaynakça

  • 1. Ardak M. B & Phate M. R. (2014). Mathematical Modeling and Computer Simulatio For Mechanical Timer Runway Escapement Mechanism. International Journal of Science, Engineering and Technology Research, 3(5), 1491-1497 2014.
  • 2. Rhode M., Geaney J. & Leng D. (2014). Collaboration For Fuzing Challenges. 57th NDIA Annual Fuze Conference, Newark, USA, 29-31.
  • 3. Overman D. (1971). Analysis Of M125 Booster Mechanism”. Harry Diamond Laboratories, Washington USA, Scientific Report, HDL-TR-1550, 1971.
  • 4. Lowen G. G. & Tepper F. R. (1978). Dynamics of Pin Pallet Runaway Escapement. Army armament research and development command dover, New york USA, Scientific Report, 07801, 1978.
  • 5. Cooper E. & Bobetsky A. (2003). Fuzing Innovations for Tomorrow’s Weapons. 47th NDIA Annual Fuze Conference, New Orleans, USA 8-10 April 2003.
  • 6. Lewis K. (2003). Enhancing Weapon Performance. 47th Annual Fuze Conference, New Orleans, USA 8-10 April 2003.
  • 7. Wagner J. (2006). 50 Years of Support Freedom. 50th Annual NDIA Fuze Conference, Norfolk, England 9-11 May 2006.
  • 8. Burke P. & Pergolizzi T. (2008). Smart Fuzing - Adding Intelligence to Fuzing Solutions. 52nd Annual Fuze Conference, Nevada, USA 13-15.
  • 9. Kautzsch K. (2008). Smart Fuzing - Adding Intelligence to Fuzing Solutions. 52nd Annual Fuze Conference, Nevada, USA 13-15.
  • 10. Fowler S. E. (2001). Safety and Arming Device Design Principles. Naval Air Warfare Center Weapons Division, China Lake USA, Scientific Report, Nawcwd Tp 8504.
  • 11. Finch C. D. (2003). Enhancing Weapon Performance. 47th Annual Fuze Conference, New Orleans, USA 8-10 April 2003.
  • 12. Hendershot J. (2012). Next Generation Fuzing For Next Generation Weapons. 56th Annual NDIA Fuze Conference, Baltimore, USA 14-16 May 2012.
  • 13. Ulamış F. (2012). Mühimmatlar için elektronik zaman ayarlı ateşleyici sistem tasarımı, , Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. 121 s.
  • 14. Campion B. (2007). Changing Fuze Standards. 51st Annual NDIA Fuze Conference, Nashville, USA 22-24 May 2007.
  • 15. Kautzsch K. B. (2007). Changing Fuze Standards. 51st Annual NDIA Fuze Conference, Nashville, USA 22-24 May 2007.
  • 16. Will B. (2009). Changing Fuze Standards. 51st NDIA Fuze Conference, Nashville, USA 22-24 May 2007.
  • 17. Deeds M. A. & Cox A. (2009). Next Generation Fuzing - Maximum Advantage for the Warfighter. 53rd Annual Fuze Conference, Lake Buena Vista, USA 19-21 May 2009.
  • 18. Geaney J. (2009). Next Generation Fuzing - Maximum Advantage for the Warfighter. 53rd Annual Fuze Conference, Lake Buena Vista, USA 19-21 May 2009.
  • 19. Lewis K. (2003). Naval Surface Warfare Center Dahlgren 47th Annual Fuze Conference, Enhancing Weapon Performance, 8-10 Aralık 2003.
  • 20. Wagner J. (2006). Junghans Feinwerktechnik GmbH & Co. KG, 50th Annual NDIA Fuze Conference, Norfolk, VA, 2006.
  • 21. Pete B. & Tony P. (2008). XM1156 Precision Guidance Kit (PGK), Information Briefing for 52nd Annual Fuze Conference, 13 – 15 May 2008.
  • 22. Kautzsch K. (2008). Junghans Microtec, 52nd NDIA Annual Conference, 13-15 Mayıs 2008.
  • 23. Perrin M. (2017). Junghans Defence New Generation Fuzes to İmprove Munition Efficiency, Parari 2017, Canberra.

HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ

Yıl 2019, Cilt: 2 Sayı: 2, 120 - 128, 31.12.2019

Öz

Büyük
ve orta kalibreli mühimmatlarda kullanılan ve mühimmatın ilk ateşleme sistemi
olarak adlandırılan tapaların alt sistemleri ele alınarak; emniyet ve
fonksiyonellik arasındaki kritik dengeyi sağlayan tapaların iç
mekanizmalarındaki dinamik hareketler incelenmiştir. Bu dinamik hareketler
mühimmatın atış anında oluşan atalet kuvvetleri ve namlunun yiv setlerinin
mühimmata kazandırdığı merkezkaç kuvvetlerinin bileşke fonksiyonudur. Bu
dinamik hareketin çıktısı mühimmatlarda namlu önü emniyeti olarak adlandırılan,
silah sistemi ve personeli atış esnasında her türlü olumsuz senaryolarda
güvende kalmasını sağlayan bir emniyet parametresidir. Bu makalede tapaların
içerisinde bulunan dişli çark sistemlerinin geometrilerinin bu emniyet
parametrelerine ne düzeyde ve nasıl etki ettiklerinin çalışmaları yer
almaktadır.
Bu
çalışmada, pandül ve çark ikilisinin birlikte çalıştığı temas noktalarının,
kurulma süresine yani namlu önü emniyet mesafesine olan etkileri
araştırılmıştır. Pandül ve çark ikilisi,  
depolamadan güvenli atış yapılıncaya kadar geçen sürede, tapanın
fonksiyon yapmasını engelleyerek silahlı kuvvetler personelinin ve
donanımlarının güvenliğini sağlayan, güvenlik ve kurma mekanizması içerisinde
yer almaktadır. Yapılan bu çalışmada, dönüsüz (kuyruk dengeli) havan
tapasındaki pandülün temas noktalarına farklı radiuslar verilerek kurulma
süreleri incelenmiştir. Yapılan çalışma sonucunda pandülün temas nokta radius
artışının kurulma süresini azalttığı, yani namlu önü emniyet mesafesini düşürdüğü
sonucuna varılmıştır.

Kaynakça

  • 1. Ardak M. B & Phate M. R. (2014). Mathematical Modeling and Computer Simulatio For Mechanical Timer Runway Escapement Mechanism. International Journal of Science, Engineering and Technology Research, 3(5), 1491-1497 2014.
  • 2. Rhode M., Geaney J. & Leng D. (2014). Collaboration For Fuzing Challenges. 57th NDIA Annual Fuze Conference, Newark, USA, 29-31.
  • 3. Overman D. (1971). Analysis Of M125 Booster Mechanism”. Harry Diamond Laboratories, Washington USA, Scientific Report, HDL-TR-1550, 1971.
  • 4. Lowen G. G. & Tepper F. R. (1978). Dynamics of Pin Pallet Runaway Escapement. Army armament research and development command dover, New york USA, Scientific Report, 07801, 1978.
  • 5. Cooper E. & Bobetsky A. (2003). Fuzing Innovations for Tomorrow’s Weapons. 47th NDIA Annual Fuze Conference, New Orleans, USA 8-10 April 2003.
  • 6. Lewis K. (2003). Enhancing Weapon Performance. 47th Annual Fuze Conference, New Orleans, USA 8-10 April 2003.
  • 7. Wagner J. (2006). 50 Years of Support Freedom. 50th Annual NDIA Fuze Conference, Norfolk, England 9-11 May 2006.
  • 8. Burke P. & Pergolizzi T. (2008). Smart Fuzing - Adding Intelligence to Fuzing Solutions. 52nd Annual Fuze Conference, Nevada, USA 13-15.
  • 9. Kautzsch K. (2008). Smart Fuzing - Adding Intelligence to Fuzing Solutions. 52nd Annual Fuze Conference, Nevada, USA 13-15.
  • 10. Fowler S. E. (2001). Safety and Arming Device Design Principles. Naval Air Warfare Center Weapons Division, China Lake USA, Scientific Report, Nawcwd Tp 8504.
  • 11. Finch C. D. (2003). Enhancing Weapon Performance. 47th Annual Fuze Conference, New Orleans, USA 8-10 April 2003.
  • 12. Hendershot J. (2012). Next Generation Fuzing For Next Generation Weapons. 56th Annual NDIA Fuze Conference, Baltimore, USA 14-16 May 2012.
  • 13. Ulamış F. (2012). Mühimmatlar için elektronik zaman ayarlı ateşleyici sistem tasarımı, , Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. 121 s.
  • 14. Campion B. (2007). Changing Fuze Standards. 51st Annual NDIA Fuze Conference, Nashville, USA 22-24 May 2007.
  • 15. Kautzsch K. B. (2007). Changing Fuze Standards. 51st Annual NDIA Fuze Conference, Nashville, USA 22-24 May 2007.
  • 16. Will B. (2009). Changing Fuze Standards. 51st NDIA Fuze Conference, Nashville, USA 22-24 May 2007.
  • 17. Deeds M. A. & Cox A. (2009). Next Generation Fuzing - Maximum Advantage for the Warfighter. 53rd Annual Fuze Conference, Lake Buena Vista, USA 19-21 May 2009.
  • 18. Geaney J. (2009). Next Generation Fuzing - Maximum Advantage for the Warfighter. 53rd Annual Fuze Conference, Lake Buena Vista, USA 19-21 May 2009.
  • 19. Lewis K. (2003). Naval Surface Warfare Center Dahlgren 47th Annual Fuze Conference, Enhancing Weapon Performance, 8-10 Aralık 2003.
  • 20. Wagner J. (2006). Junghans Feinwerktechnik GmbH & Co. KG, 50th Annual NDIA Fuze Conference, Norfolk, VA, 2006.
  • 21. Pete B. & Tony P. (2008). XM1156 Precision Guidance Kit (PGK), Information Briefing for 52nd Annual Fuze Conference, 13 – 15 May 2008.
  • 22. Kautzsch K. (2008). Junghans Microtec, 52nd NDIA Annual Conference, 13-15 Mayıs 2008.
  • 23. Perrin M. (2017). Junghans Defence New Generation Fuzes to İmprove Munition Efficiency, Parari 2017, Canberra.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makaleler
Yazarlar

Serhad Yıldız

Zühtü Onur Pehlivanlı Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

APA Yıldız, S., & Pehlivanlı, Z. O. (2019). HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ. Bartın University International Journal of Natural and Applied Sciences, 2(2), 120-128.
AMA Yıldız S, Pehlivanlı ZO. HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ. JONAS. Aralık 2019;2(2):120-128.
Chicago Yıldız, Serhad, ve Zühtü Onur Pehlivanlı. “HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ”. Bartın University International Journal of Natural and Applied Sciences 2, sy. 2 (Aralık 2019): 120-28.
EndNote Yıldız S, Pehlivanlı ZO (01 Aralık 2019) HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ. Bartın University International Journal of Natural and Applied Sciences 2 2 120–128.
IEEE S. Yıldız ve Z. O. Pehlivanlı, “HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ”, JONAS, c. 2, sy. 2, ss. 120–128, 2019.
ISNAD Yıldız, Serhad - Pehlivanlı, Zühtü Onur. “HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ”. Bartın University International Journal of Natural and Applied Sciences 2/2 (Aralık 2019), 120-128.
JAMA Yıldız S, Pehlivanlı ZO. HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ. JONAS. 2019;2:120–128.
MLA Yıldız, Serhad ve Zühtü Onur Pehlivanlı. “HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ”. Bartın University International Journal of Natural and Applied Sciences, c. 2, sy. 2, 2019, ss. 120-8.
Vancouver Yıldız S, Pehlivanlı ZO. HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ. JONAS. 2019;2(2):120-8.