Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors

Yıl 2023, , 642 - 652, 26.09.2023
https://doi.org/10.33462/jotaf.1207167

Öz

Anything that cannot be measured cannot be managed. Based on the thought, the aims of this study are to evaluate water levels and flow rates measured by Limnigraph (OEL), pressure sensor (PS) and ultrasonic sensors (US) in the open irrigation canal. Limnigraph and pressure sensor sensed water levels and flow rates under un-fluctuating conditions in the Stilling Well and ultrasonic sensors directly measured them from water surface under fluctuating conditions at the Kartalkaya Dam in Kahramanmaraş. Assuming Limnigraph water level and flow rates readings correct and water levels and flow rates of Limnigraph were compared with that of pressure and ultrasonic sensor. Mean Absolute Percentage Error (MAPE) and ANOVA tests were done on 2454 observations. Average of water level and flow rates of limnigraph, pressure and ultrasonic sensor were 928±4.9 mm and 4.61±0.038 m3s-1, 927±4.9mm and 4.62±0.037 m3s-1, and 922±4.9 mm and 4.58±0.037 m3s-1, respectively. Differences between the average water levels and flow rates were 1 mm (928-927) and 0.01 m3s-1 (4.61-4.62) under un-fluctuating and 6 mm (928-922) and 0.03 m3s-1 (4.61-4.58) under fluctuating conditions. The fluctuation increased the differences between the average water levels and flow rates. MAPE of water levels and flow rates for pressure and ultrasonic sensor were calculated as 0.741% and 1.466% under un-fluctuation, and 1.453% and 2.490% under fluctuation conditions, respectively and since they were below 10%, the levels of agreement between the two data sets are considered as “very good”. However, fluctuation conditions increased MAPEs from 0.741% to 1.453%, from 1.466% to 2.490%. The water levels and flow rates of both sensors were not statistically different from those of optic encoder Limnigraph. Accordingly, both sensors can be used to measure water levels and flow rates in open irrigation canal but un-fluctuating conditions should be preferred. In addition, ultrasonic sensors can be used in environments that block, corrode the pressure sensors and make it difficult to use by floating objects.

Proje Numarası

2017/4-2 YLS

Kaynakça

  • Abed, B. S. (2021). Flow Measurements in Open Channels Using Integrating-Floats. Journal of Engineering, 27(1):130-141.
  • Acatay, S. T. (1996). Sulama Mühendisliği, İzmir Dokuz Eylül Üniversitesi Vakfı Basım ve Yayın Merkezi, İzmir (in Turkish).
  • Alfa, M. I., Adie, D. B., Ajibike, M. A. and Mudiare, O. J. (2018). Development of rating curve for Ofu River at Oforachi Hydrometric Station. Nigerian Journal of Technological Development, 15(1), 14-19.
  • Ali, M., Gençoğlan, C., Gençoğlan, S. and Uçak, A. B. (2021). Yield and water use of eggplants (Solanum melongena L.) under different irrigation regimes and fertilizers. Journal of Tekirdag Agricultural Faculty, 18(3): 533-544.
  • Ardıçlıoğlu, M. ve İlkentapar, M. (2015). Açık Kanal Savak Akımlarında Debinin Farklı Yöntemler ile Belirlenmesi. İMO, 4. Su Yapıları Sempozyumu, s: 371-380 19-21 Kasım, Antalya, Türkiye. (in Turkish).
  • Ardıçlıoğlu, M., Ozdin, S., Gemici, E. and Kalin, L. (2010). Determination of flow properties in shallow flow river, Dryland Hydrology: Global Changes and Local Solution. Arizona Hydrological Society Symposium, September 1-4, Tucson, AZ, USA.
  • Atek (2020). Pressure Transmitter. http://www.ateksensor.com (Accessed date:08.05.2020) Bello, M. I., Gana, S. M., Faruk, M. I. and Umar, M. J. (2018). Autonomous ultrasonic based water level detection and control system. Nigerian Journal of Technology, 37(2):508-513.
  • Çakmak, B. ve Tekiner, M. (2010). Çanakkale Kepez Kooperatifinde Sulama Performansının Değerlendirilmesi. 1. Sulama ve Tarımsal Yapılar Sempozyumu, s.279-290, 27-29 Mayıs, Kahramanmaraş, Türkiye.
  • Çetin, M., Kaman, H., Kırda, C. and Sesveren, S. (2020). Analysis of irrigation performance in water resources planning and management: a case study. Fresenius Environmental Bulletin, 29(5):3409-3414.
  • Chow, V. T., Maidment, D. R., Larry, W. (1988). Applied Hydrology. International edition, MacGraw-Hill, Inc, 149. Clarke, R. T. (1999). Uncertainty in the estimation of mean annual flood due to rating curve definition. Journal of Hydrology, 222: 185-190.
  • DSİ (2017) DSİ 20. Bölge Müdürlüğü. Hidroloji Şube Müdürlüğü, Kahramanmaraş, Türkiye. Dusarlapudi, K., Kota, V. C., Annepu, C. R. and Narayana, M. V. (2020). Accuracy analysis of an ultrasonic sensor over an open channel rectangular notch for rainwater harvesting. International Journal of Scientific & Technology Research, 9(1):2813-2816.
  • Fisher, D.K. and Sui, R. (2013). An inexpensive open-source ultrasonic sensing system for monitoring liquid levels. Agricultural Engineering International: CIGR Journal, 15(4): 328-334.
  • Garvin, D. (1993). Building learning organizations. Harvard Business Review, 71(4): 78-91.
  • Gençoğlan, C. ve Gençoğlan, S. (2016). Basınç transdüseri ve programlanabilir lojik kontrol (plc) kullanarak buharlaşma kabındaki su yüksekliğinin ölçülmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(2): 35-43.
  • Gençoğlan, C., Gençoğlan, S. and Selçuk, U. (2021). Designing Class A pan automation system (CAPAS) based on Programmable Logic Control (PLC) and testing. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 38(1):1-10.
  • Gençoğlan, C., Gençoğlan, S. and Usta. S. (2023). Measurement of water depth in a class a pan using ultrasonic transducer and programmable logic control (PLC). Journal of Tekirdag Agricultural Faculty, 20(2): 343-352.
  • Gençoğlan, C., Gençoğlan, S., Küçüktopcu, E., Uçak, A. B. ve Kıraç, A. M. (2013). Ultrasonik Algılayıcı Kullanarak A Sınıfı Buharlaşma Kabındaki Su Yüksekliğinin Ölçülmesi. 3. Ulusal Toprak ve Su Kaynakları Kongresi, s.391-398, 22-24 Ekim, Tokat, Türkiye.
  • Harlan, M. E., Gleason, C. J., Altenau, E. H., Butman, D., Carter, T., et al. (2021). Discharge Estimation from Dense Arrays of Pressure Transducers. Water Resources Research, 57(3): e2020WR028714.
  • Hashemian, H. M. and Jiang, J. (2009). Pressure transmitter accuracy. ISA Transactions, 48: 383-388.
  • Huang, Y., Fan, X., Chen, S. C. and Zhao, N. (2019). Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Advanced functional materials, 29(12): 1808509-1808533.
  • Hydrological Procedure (2018). Hydrological Standard for Water Level Station Instrumentation. HP 33. http://h2o.water.gov.my/man_hp1/HP33.pdf, (Accessed date: 05.10.2022).
  • Karabacak, M. (2003). Industrial Electronic. Color Ofset Matbaacılık Yayıncılık, İskenderun Hatay.
  • Koshoeva, B. B., Mikheeva, N. I., Mikheev, D. I., Bakalova, A. T. (2021). Arduino-based automated system for determining water flow consumption in open flow. In Journal of Physics: Conference Series 2142(1): 012009, IOP Publishing.
  • Kukul, M. (2008). Akım anahtar eğrilerinin irdelenmesi. (Yüksek Lisans Tezi) İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Kumar, A. and Verma, P. (2015). Ultrasonic water level measurement. (MSc. Thesis) Department of Electronic Systems Engineerıng Indian Institute of Science, Bangalore, India.
  • Léonard, J., Mietton, M., Najib, H. and Gourbesville, P. (2000). Rating curve modelling with Manning's equation to manage instability and improve extrapolation. Hydrological Sciences Journal, 45(5): 739-750.
  • Lewis, C. D. (1982). Industrial and Business Forecasting Methods: Apractical Guide to Exponential Smoothing and Curve Fitting. Butterworths Scientific. ISBN: 978-0-408-00559-3, London, England, 144s.
  • Li, M., Xu, Y., Fu, Q., Singh, V.P., Liu, D., et al. (2020). Efficient irrigation water allocation and its impact on agricultural sustainability and water scarcity under uncertainty. Journal of Hydrology, 586:124888.
  • Machado, N., Junior, D. P. and Mercuri, E. G. F. (2021). Internet of things (IoT) applications: feasibility of a remote limnimeter based on ultrasonic sensor. https://www.aprh.pt/congressoagua2021/docs/15ca_162.pdf, (Accessed date: 15.10.2022).
  • Meral, R. and Benli, A. (2013). Türkiye akarsuları akım ölçümlerinde mevcut durum ve alternatif yöntemlerin değerlendirilmesi. Sakarya University Journal of Science, 17(3): 477-481.
  • Ministry of Development (2018). Tarımda Toprak ve Suyun Sürdürülebilir Kullanımı. Özel İhtisas Komisyonu Raporu. Ankara.
  • Mohammed, S. L., Al-Naji, A., Farjo, M. M. and Chahl, J. (2019). Highly Accurate Water Level Measurement System Using A Microcontroller and an Ultrasonic Sensor. In IOP Conference Series: Materials Science and Engineering 518(4):042025, IOP Publishing.
  • Nirupam, S., Dwivedi, K. and Solanki, S. S. (2015). Innovative design of dam water level sensor. Sensors & Transducers, 189(6): 150-156.
  • Pepperl and Fuchs (2022). Cisimden Yansımalı ve Reflektörlü Tip Sensorler. Available: https://www.tme.eu/Document/8c4faa1fa4f153b055bfa0aa91600582/133991.pdf, (Accessed date: 20.9.2022). Pereira, T. S. R., de Carvalho, T. P., Mendes, T. A. and Formiga, K. T. M. (2022). Evaluation of water level in flowing channels using ultrasonic sensors. Sustainability, 14(9): 5512.
  • Prayash (2018). Automated water level controlling and detection using arduino and gsm sim module. International Journal of Science and Research, 7 (6): 2018.535-538.
  • Rahman, N. M. F., Manjang, S. and Zainuddin, Z. (2017). Water Level Monitoring Using Ultrasonic-Pipe In Open Channel. In 2017 15th International Conference on Quality in Research (QiR). International Symposium on Electrical and Computer Engineering. 24-27 July, P. 262-266. Bali, Indonesia.
  • Sai, P. Y. (2017). An automated smart water level indicator using IoT an effective practice of smart irrigation. International Journal of Computer Science Engineering, 6(4): 93-97.
  • Selvan, S. M., Roy, A., Singh, K. P. and Kumar, A. (2018). Automatic water level indicator using ultrasonic sensor and GSM module. International Journal of Advance Research And Innovative Ideas in Education, 4(5): 261-269.
  • Sezer, Ç. Ö., Öztekin, T. and Cömert, M. M. (2017). Determination of instant evaporation from class a pan with ultrasonic depth meter. Journal of Agricultural Faculty of Uludağ University, 31: 1-7.
  • Sorensen, J. P. and Butcher, A. S. (2011). Water level monitoring pressure transducers—A need for industry‐wide standards. Groundwater Monitoring & Remediation, 31(4), 56-62.
  • Trout, T. (1986). Pressure sensor configurations for open channel flow recorders. Applied Engineering in Agriculture, 2(2): 129-132.
  • Tülücü, K. (2002). Hidroloji. Çukurova Üniversitesi Ziraat Fakültesi Genel Yayın No:139, Ders Kitapları Yayın No:A-44, Adana.
  • Varun, K. S., Kumar, K. A., Chowdary, V. R. and Raju, C. S. K. (2018). Water level management using ultrasonic sensor (automation). International Journal of Computer Sciences and Engineering, 6(6):799-804.
  • Yuliza, E., Salam, R. A., Amri, I., Atmajati, D. and Hapidi, D. A., (2016). Characterization of a water level measurement system developed using a commercial submersible pressure transducer. In 2016 International Conference on Instrumentation, Control and Automation (ICA). P. 99-102, Bandung, Indonesia.
  • Zhao, X, and Wen, D. (2008). Fabrication and characteristics of a nano-polysilicon thin film pressure sensor. Journal of Semiconductors, 29: 2038-2042.

Sulama Kanalında Limnigraf, Basınç ve Ultrasonik Sensörler Kullanılarak Ölçülen Su Seviyeleri ve Debilerinin Değerlendirilmesi

Yıl 2023, , 642 - 652, 26.09.2023
https://doi.org/10.33462/jotaf.1207167

Öz

Ölçülemeyen hiçbir şey yönetilemez. Bu düşünceden hareketle, bu çalışmanın amacı, açık sulama kanalında Limnigraph (OEL), basınç sensöru (PS) ve ultrasonik sensör (US) ile ölçülen su seviyelerini ve debilerini değerlendirmektir. Kartalkaya Barajı'nda sol sahil sulama kanalında su seviyesi ve debiler, sulama mevsiminde akım gözlem istasyonunda (AGİ) ölçülmüştür. Akım gözlem istasyonunda limnigraf ve basınç sensörü, su seviyelerini dalgalanmayan koşullar altında ve ultrasonik sensörler ise dalgalı koşullar altında doğrudan su yüzeyinden ölçmüştür. Limnigraph'ın su seviyesi ve debi değerlerinin temel alınarak, basınç ve ultrasonik sensörün su seviyeleri ve debi değerleri ile karşılaştırılmıştır. Ortalama Mutlak Yüzde Hatası (MAPE) ve ANOVA testleri 2454 gözlem değeri üzerinde yapılmıştır. Limnigraf, basınç ve ultrasonik sensörün ortalama su seviyesi ve debisi sırasıyla 928±4.9 mm ve 4.61±0.038 m3s-1, 927±4.9 mm ve 4.62±0.037 m3s-1, 922±4.9 mm ve 4.58±0.037 m3s-1’dir. Ortalama su seviyeleri ve debiler arasındaki farklar, dalgasız ortamda 1 mm (928-927) ve 0.01 m3s-1 (4.61-4.62), dalgalı koşullar altında 6 mm (928-922) ve 0.03 m3s-1 (4.61-4.58)’dir. Basınç ve ultrasonik sensörün belirlediği su seviyeleri ve debilerinin MAPE'si dalgasız koşullarda sırasıyla %0.741 ve %1.466, dalgalı koşullarında ise %1.453 ve %2.490 olarak hesaplanmıştır. Bu değerler, %10'un altında oldukları için iki veri seti uyumu “çok iyi” olarak kabul edilmektedir. Dalgalanma koşullar, MAPE değerleri %0.741'den %1.453'e, %1.466'dan %2.490'a yükseltmiştir. Dalgalı koşullar ortalama su seviyesi ve debi değerleri arasındaki farkı ve MEPA değerlerini artırmıştır. Her iki sensörün su seviyeleri ve debileri, limnigrafın değerlerinden istatistiksel olarak farklı değildi. Buna göre, açık sulama kanalında su seviyelerini ve debileri ölçmek için her iki sensör de kullanılabilir ancak dalgalı olmayan koşullar tercih edilmelidir. Ayrıca ultrasonik sensörler, basınç sensörlerini tıkayan, aşındıran ve yüzen nesneler tarafından kullanılmasını zorlaştıran ortamlarda kullanılabilir.

Destekleyen Kurum

KSU BAP

Proje Numarası

2017/4-2 YLS

Teşekkür

BU projeyi destekleyen KSÜ BAP' a teşekkür ederim

Kaynakça

  • Abed, B. S. (2021). Flow Measurements in Open Channels Using Integrating-Floats. Journal of Engineering, 27(1):130-141.
  • Acatay, S. T. (1996). Sulama Mühendisliği, İzmir Dokuz Eylül Üniversitesi Vakfı Basım ve Yayın Merkezi, İzmir (in Turkish).
  • Alfa, M. I., Adie, D. B., Ajibike, M. A. and Mudiare, O. J. (2018). Development of rating curve for Ofu River at Oforachi Hydrometric Station. Nigerian Journal of Technological Development, 15(1), 14-19.
  • Ali, M., Gençoğlan, C., Gençoğlan, S. and Uçak, A. B. (2021). Yield and water use of eggplants (Solanum melongena L.) under different irrigation regimes and fertilizers. Journal of Tekirdag Agricultural Faculty, 18(3): 533-544.
  • Ardıçlıoğlu, M. ve İlkentapar, M. (2015). Açık Kanal Savak Akımlarında Debinin Farklı Yöntemler ile Belirlenmesi. İMO, 4. Su Yapıları Sempozyumu, s: 371-380 19-21 Kasım, Antalya, Türkiye. (in Turkish).
  • Ardıçlıoğlu, M., Ozdin, S., Gemici, E. and Kalin, L. (2010). Determination of flow properties in shallow flow river, Dryland Hydrology: Global Changes and Local Solution. Arizona Hydrological Society Symposium, September 1-4, Tucson, AZ, USA.
  • Atek (2020). Pressure Transmitter. http://www.ateksensor.com (Accessed date:08.05.2020) Bello, M. I., Gana, S. M., Faruk, M. I. and Umar, M. J. (2018). Autonomous ultrasonic based water level detection and control system. Nigerian Journal of Technology, 37(2):508-513.
  • Çakmak, B. ve Tekiner, M. (2010). Çanakkale Kepez Kooperatifinde Sulama Performansının Değerlendirilmesi. 1. Sulama ve Tarımsal Yapılar Sempozyumu, s.279-290, 27-29 Mayıs, Kahramanmaraş, Türkiye.
  • Çetin, M., Kaman, H., Kırda, C. and Sesveren, S. (2020). Analysis of irrigation performance in water resources planning and management: a case study. Fresenius Environmental Bulletin, 29(5):3409-3414.
  • Chow, V. T., Maidment, D. R., Larry, W. (1988). Applied Hydrology. International edition, MacGraw-Hill, Inc, 149. Clarke, R. T. (1999). Uncertainty in the estimation of mean annual flood due to rating curve definition. Journal of Hydrology, 222: 185-190.
  • DSİ (2017) DSİ 20. Bölge Müdürlüğü. Hidroloji Şube Müdürlüğü, Kahramanmaraş, Türkiye. Dusarlapudi, K., Kota, V. C., Annepu, C. R. and Narayana, M. V. (2020). Accuracy analysis of an ultrasonic sensor over an open channel rectangular notch for rainwater harvesting. International Journal of Scientific & Technology Research, 9(1):2813-2816.
  • Fisher, D.K. and Sui, R. (2013). An inexpensive open-source ultrasonic sensing system for monitoring liquid levels. Agricultural Engineering International: CIGR Journal, 15(4): 328-334.
  • Garvin, D. (1993). Building learning organizations. Harvard Business Review, 71(4): 78-91.
  • Gençoğlan, C. ve Gençoğlan, S. (2016). Basınç transdüseri ve programlanabilir lojik kontrol (plc) kullanarak buharlaşma kabındaki su yüksekliğinin ölçülmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(2): 35-43.
  • Gençoğlan, C., Gençoğlan, S. and Selçuk, U. (2021). Designing Class A pan automation system (CAPAS) based on Programmable Logic Control (PLC) and testing. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 38(1):1-10.
  • Gençoğlan, C., Gençoğlan, S. and Usta. S. (2023). Measurement of water depth in a class a pan using ultrasonic transducer and programmable logic control (PLC). Journal of Tekirdag Agricultural Faculty, 20(2): 343-352.
  • Gençoğlan, C., Gençoğlan, S., Küçüktopcu, E., Uçak, A. B. ve Kıraç, A. M. (2013). Ultrasonik Algılayıcı Kullanarak A Sınıfı Buharlaşma Kabındaki Su Yüksekliğinin Ölçülmesi. 3. Ulusal Toprak ve Su Kaynakları Kongresi, s.391-398, 22-24 Ekim, Tokat, Türkiye.
  • Harlan, M. E., Gleason, C. J., Altenau, E. H., Butman, D., Carter, T., et al. (2021). Discharge Estimation from Dense Arrays of Pressure Transducers. Water Resources Research, 57(3): e2020WR028714.
  • Hashemian, H. M. and Jiang, J. (2009). Pressure transmitter accuracy. ISA Transactions, 48: 383-388.
  • Huang, Y., Fan, X., Chen, S. C. and Zhao, N. (2019). Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Advanced functional materials, 29(12): 1808509-1808533.
  • Hydrological Procedure (2018). Hydrological Standard for Water Level Station Instrumentation. HP 33. http://h2o.water.gov.my/man_hp1/HP33.pdf, (Accessed date: 05.10.2022).
  • Karabacak, M. (2003). Industrial Electronic. Color Ofset Matbaacılık Yayıncılık, İskenderun Hatay.
  • Koshoeva, B. B., Mikheeva, N. I., Mikheev, D. I., Bakalova, A. T. (2021). Arduino-based automated system for determining water flow consumption in open flow. In Journal of Physics: Conference Series 2142(1): 012009, IOP Publishing.
  • Kukul, M. (2008). Akım anahtar eğrilerinin irdelenmesi. (Yüksek Lisans Tezi) İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Kumar, A. and Verma, P. (2015). Ultrasonic water level measurement. (MSc. Thesis) Department of Electronic Systems Engineerıng Indian Institute of Science, Bangalore, India.
  • Léonard, J., Mietton, M., Najib, H. and Gourbesville, P. (2000). Rating curve modelling with Manning's equation to manage instability and improve extrapolation. Hydrological Sciences Journal, 45(5): 739-750.
  • Lewis, C. D. (1982). Industrial and Business Forecasting Methods: Apractical Guide to Exponential Smoothing and Curve Fitting. Butterworths Scientific. ISBN: 978-0-408-00559-3, London, England, 144s.
  • Li, M., Xu, Y., Fu, Q., Singh, V.P., Liu, D., et al. (2020). Efficient irrigation water allocation and its impact on agricultural sustainability and water scarcity under uncertainty. Journal of Hydrology, 586:124888.
  • Machado, N., Junior, D. P. and Mercuri, E. G. F. (2021). Internet of things (IoT) applications: feasibility of a remote limnimeter based on ultrasonic sensor. https://www.aprh.pt/congressoagua2021/docs/15ca_162.pdf, (Accessed date: 15.10.2022).
  • Meral, R. and Benli, A. (2013). Türkiye akarsuları akım ölçümlerinde mevcut durum ve alternatif yöntemlerin değerlendirilmesi. Sakarya University Journal of Science, 17(3): 477-481.
  • Ministry of Development (2018). Tarımda Toprak ve Suyun Sürdürülebilir Kullanımı. Özel İhtisas Komisyonu Raporu. Ankara.
  • Mohammed, S. L., Al-Naji, A., Farjo, M. M. and Chahl, J. (2019). Highly Accurate Water Level Measurement System Using A Microcontroller and an Ultrasonic Sensor. In IOP Conference Series: Materials Science and Engineering 518(4):042025, IOP Publishing.
  • Nirupam, S., Dwivedi, K. and Solanki, S. S. (2015). Innovative design of dam water level sensor. Sensors & Transducers, 189(6): 150-156.
  • Pepperl and Fuchs (2022). Cisimden Yansımalı ve Reflektörlü Tip Sensorler. Available: https://www.tme.eu/Document/8c4faa1fa4f153b055bfa0aa91600582/133991.pdf, (Accessed date: 20.9.2022). Pereira, T. S. R., de Carvalho, T. P., Mendes, T. A. and Formiga, K. T. M. (2022). Evaluation of water level in flowing channels using ultrasonic sensors. Sustainability, 14(9): 5512.
  • Prayash (2018). Automated water level controlling and detection using arduino and gsm sim module. International Journal of Science and Research, 7 (6): 2018.535-538.
  • Rahman, N. M. F., Manjang, S. and Zainuddin, Z. (2017). Water Level Monitoring Using Ultrasonic-Pipe In Open Channel. In 2017 15th International Conference on Quality in Research (QiR). International Symposium on Electrical and Computer Engineering. 24-27 July, P. 262-266. Bali, Indonesia.
  • Sai, P. Y. (2017). An automated smart water level indicator using IoT an effective practice of smart irrigation. International Journal of Computer Science Engineering, 6(4): 93-97.
  • Selvan, S. M., Roy, A., Singh, K. P. and Kumar, A. (2018). Automatic water level indicator using ultrasonic sensor and GSM module. International Journal of Advance Research And Innovative Ideas in Education, 4(5): 261-269.
  • Sezer, Ç. Ö., Öztekin, T. and Cömert, M. M. (2017). Determination of instant evaporation from class a pan with ultrasonic depth meter. Journal of Agricultural Faculty of Uludağ University, 31: 1-7.
  • Sorensen, J. P. and Butcher, A. S. (2011). Water level monitoring pressure transducers—A need for industry‐wide standards. Groundwater Monitoring & Remediation, 31(4), 56-62.
  • Trout, T. (1986). Pressure sensor configurations for open channel flow recorders. Applied Engineering in Agriculture, 2(2): 129-132.
  • Tülücü, K. (2002). Hidroloji. Çukurova Üniversitesi Ziraat Fakültesi Genel Yayın No:139, Ders Kitapları Yayın No:A-44, Adana.
  • Varun, K. S., Kumar, K. A., Chowdary, V. R. and Raju, C. S. K. (2018). Water level management using ultrasonic sensor (automation). International Journal of Computer Sciences and Engineering, 6(6):799-804.
  • Yuliza, E., Salam, R. A., Amri, I., Atmajati, D. and Hapidi, D. A., (2016). Characterization of a water level measurement system developed using a commercial submersible pressure transducer. In 2016 International Conference on Instrumentation, Control and Automation (ICA). P. 99-102, Bandung, Indonesia.
  • Zhao, X, and Wen, D. (2008). Fabrication and characteristics of a nano-polysilicon thin film pressure sensor. Journal of Semiconductors, 29: 2038-2042.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sulama Sistemleri
Bölüm Makaleler
Yazarlar

Cafer Gençoğlan 0000-0002-4559-4354

Mehmet Durak Tüysüz 0000-0002-1043-5273

Serpil Gençoğlan 0000-0002-7390-8365

Proje Numarası 2017/4-2 YLS
Erken Görünüm Tarihi 12 Eylül 2023
Yayımlanma Tarihi 26 Eylül 2023
Gönderilme Tarihi 19 Kasım 2022
Kabul Tarihi 19 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Gençoğlan, C., Tüysüz, M. D., & Gençoğlan, S. (2023). Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors. Tekirdağ Ziraat Fakültesi Dergisi, 20(3), 642-652. https://doi.org/10.33462/jotaf.1207167
AMA Gençoğlan C, Tüysüz MD, Gençoğlan S. Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors. JOTAF. Eylül 2023;20(3):642-652. doi:10.33462/jotaf.1207167
Chicago Gençoğlan, Cafer, Mehmet Durak Tüysüz, ve Serpil Gençoğlan. “Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors”. Tekirdağ Ziraat Fakültesi Dergisi 20, sy. 3 (Eylül 2023): 642-52. https://doi.org/10.33462/jotaf.1207167.
EndNote Gençoğlan C, Tüysüz MD, Gençoğlan S (01 Eylül 2023) Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors. Tekirdağ Ziraat Fakültesi Dergisi 20 3 642–652.
IEEE C. Gençoğlan, M. D. Tüysüz, ve S. Gençoğlan, “Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors”, JOTAF, c. 20, sy. 3, ss. 642–652, 2023, doi: 10.33462/jotaf.1207167.
ISNAD Gençoğlan, Cafer vd. “Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors”. Tekirdağ Ziraat Fakültesi Dergisi 20/3 (Eylül 2023), 642-652. https://doi.org/10.33462/jotaf.1207167.
JAMA Gençoğlan C, Tüysüz MD, Gençoğlan S. Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors. JOTAF. 2023;20:642–652.
MLA Gençoğlan, Cafer vd. “Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors”. Tekirdağ Ziraat Fakültesi Dergisi, c. 20, sy. 3, 2023, ss. 642-5, doi:10.33462/jotaf.1207167.
Vancouver Gençoğlan C, Tüysüz MD, Gençoğlan S. Evaluation of Water Levels and Flow Rates Measured in Irrigation Canal Using Limnigraph, Pressure and Ultrasonic Sensors. JOTAF. 2023;20(3):642-5.