Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content

Yıl 2026, Cilt: 23 Sayı: 1, 128 - 137, 07.01.2026
https://doi.org/10.33462/jotaf.1609302

Öz

Buckwheat is a highly nutritious grain that contains macro and micronutrients with antioxidant potential. However, some anti-nutritional components in buckwheat, such as phytic acid and condensed tannins, reduce its bioavailability. Germination is an ancient and natural method to improve the nutritional value of cereal grains. Controlled germination processes increase the nutritional value of pseudocereals by reducing the amount of antinutrients. Thus, the bioavailability of nutrients improved. Ultrasound-assisted germination can be a good alternative for increasing nutritional and bioactive values and mitigating the anti-nutritional properties of buckwheat by accelerating enzyme activity and biochemical changes by affecting the cell membrane structure. This study investigated the changes in chemical composition, phenolic content, antioxidant activity, color, and anti-nutrient content of buckwheat grains (Fagopyrum esculentum Moench. cv. Aktaş) germinated for 72 hours by traditional and ultrasound-assisted methods. The highest total phenolic content (498.572.93 mg GAE 100 g-1) and antioxidant activity (10.911.62 mol TEAC g-1) of buckwheat were measured in the germinated sample using the ultrasound-assisted method. However, the color changes were not notable during 72 h of germination. The lipid (3.06 – 3.39%) and protein contents (12.56 – 15.05%) were increased after germination. The starch content was 58.58% in ungerminated buckwheat and decreased (52.36%) after 72 h of germination using the ultrasound-assisted method. In germinated samples, tannin content was reduced by 43 – 54%, whereas a slight reduction was observed in phytic acid concentrations. Ultrasound-assisted germination can be a valuable alternative to improve the chemical composition and bioactive potential and mitigate the anti-nutritional properties of buckwheat grains. Germinated grain, flour, or processed products might be good alternatives to traditional cereal consumption because of their improved functional properties.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Teşekkür

The authors thank the Ministry of Agriculture and Forestry, Çorum Department, Türkiye, for their help in supplying Aktaş buckwheat grain. The authors also thank Özge Aydoğdu for helping with NIR spectroscopy.

Kaynakça

  • Anonymous (2022a). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/site (Accessed Date: 20.12.2024).
  • Anonymous (2022b). Bahri Dağdaş International Agricultural Research Institute. Republic of Turkey Ministry of Agriculture and Forestry Bahri Dağdaş International Agricultural Research Institute Directorate. https://arastirma.tarimorman.gov.tr/bahridagdas (Access Date:15.12.2024).
  • Agregán, R., Guzel, N., Guzel, M., Bangar, S. P., Zengin, G., Kumar, M. and Lorenzo, J. M. (2023). The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. Food and Bioprocess Technology, 16(5): 961–986. https://doi.org/10.1007/s11947-022-02936-8
  • Aloo, S. O., Ofosu, F. K. and Oh, D. H. (2021). Effect of germination on alfalfa and buckwheat: Phytochemical profiling by UHPLC-ESI-QTOF-MS/MS, bioactive compounds, and in-vitro studies of their diabetes and obesity-related functions. Antioxidants, 10(10): 1613 https://doi.org/10.3390/antiox10101613
  • Altıkardeş, E. and Güzel, N. (2024). Impact of germination pre-treatments on buckwheat and Quinoa: Mitigation of anti-nutrient content and enhancement of antioxidant properties. Food Chemistry, X: 21: 101182. https://doi.org/10.1016/j.fochx.2024.101182
  • Altuner, F., Oral, E. and Baran, I. (2022). Determination of the effects of salt (NaCl) stress on germination in some barley (Hordeum vulgare L.) Varieties. Journal of Tekirdag Agricultural Faculty, 19(2): 39–50. https://doi.org/10.33462/jotaf.868594
  • Alvarez-Jubete, L., Arendt, E. K. and Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 60(SUPPL.4): 240–257. https://doi.org/10.1080/09637480902950597
  • Békés, F., Schoenlechner, R. and Tömösközi, S. (2017). Ancient Wheats and Pseudocereals for Possible use in Cereal-Grain Dietary Intolerances. In: Cereal Grains (Second Edition). Ed(s): C. Wrigley, I. Batey, and D. Miskelly, Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100719-8.00014-0
  • Berghofer, E. and Schoenlechner, R. (2002). Grain Amaranth. In: Pseudocereals and Less Common Cereals: Grain Properties and Utilization Potential. Ed(s): P. S. Belton and J. R. N. Taylor, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-09544-7_7
  • Beyaz, R. (2023). Germination and seedling properties of Lotus corniculatus L. under simulated drought stress. Journal of Tekirdag Agricultural Faculty, 20(4): 879–889. https://doi.org/10.33462/jotaf.1226444
  • Bhinder, S., Kumari, S., Singh, B., Kaur, A. and Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry, 346: 128915. https://doi.org/10.1016/j.foodchem.2020.128915
  • Bhinder, S., Singh, N. and Kaur, A. (2022). Impact of germination on nutraceutical, functional and gluten free muffin making properties of Tartary buckwheat (Fagopyrum tataricum). Food Hydrocolloids, 124: 107268. https://doi.org/10.1016/j.foodhyd.2021.107268
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1): 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Díaz Gonz´alez, D., Morawicki, R. and Mauromoustakos, A. (2019). Effect of nixtamalization treatment of three varieties of grain sorghum on the reduction of total phenolics and their subsequent enzymatic hydrolysis. Journal of Food Processing and Preservation, 43(9): e14067. https://doi.org/10.1111/jfpp.14067
  • Ding, J., Hou, G. G., Nemzer, B. V., Xiong, S., Dubat, A. and Feng, H. (2018). Effects of controlled germination on selected physicochemical and functional properties of whole-wheat flour and enhanced γ-aminobutyric acid accumulation by ultrasonication. Food Chemistry, 243: 214–221. https://doi.org/10.1016/j.foodchem.2017.09.128
  • Dizlek, H., Sertaç Özer, M., İnanç, E. and Gül, H (2009). Composition of buckwheat (Fagopyrum esculentum Moench) and its possible uses in food industry. GIDA: The Journal of Food, 34 (5): 317–324.
  • Gu, Z., Jin, Z., Schwarz, P., Rao, J., and Chen, B. (2023). Unraveling the role of germination days on the aroma variations of roasted barley malts via gas chromatography-mass spectrometry based untargeted and targeted flavoromics. Food Chemistry, 426: 136563. https://doi.org/10.1016/j.foodchem.2023.136563
  • Güzel, N. (2021). Morphometric and physico-chemical properties of cornelian cherry (Cornus mas L.) grown in Çorum, Turkey. Akademik Gıda, 19(4): 373–380. https://doi.org/10.24323/akademik-gida.1050750
  • Güzel, N., Taği, Ş. and Özkan, M. (2022). Effects of Moisture Contents and Storage Temperatures on the Physical, Chemical and Microbiological Qualities of Non-Sulfitted Dried Apricots. Journal of Agricultural Sciences, 28(4): 691–703. https://doi.org/10.15832/ankutbd.959820
  • Haug, W. and Lantzsch, H. ‐J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34(12): 1423–1426. https://doi.org/10.1002/jsfa.2740341217
  • Kokten, K., Cacan, E., Ozdemir, S., Ucar, R., Mokhtarzadeh, S., Kutlu, M. A. and Ekmekci, M. (2023). Chemical contents and fatty acids composition of the stems, leaves, flowers, and seeds of Fagopyrum esculentum. Chemistry of Natural Compounds, 59 (6): 1162–1165. https://doi.org/10.1007/s10600-023-04217-y
  • Kumari, S., Bhinder, S., Singh, B. and Kaur, A. (2023). Physicochemical properties, non-nutrients and phenolic composition of germinated freeze-dried flours of foxtail millet, proso millet and common buckwheat. Journal of Food Composition and Analysis, 115: 105043. https://doi.org/10.1016/j.jfca.2022.105043
  • Niro, S., D’Agostino, A., Fratianni, A., Cinquanta, L. and Panfili, G. (2019). Gluten-free alternative grains: Nutritional evaluation and bioactive compounds. Foods, 8(6): 208. https://doi.org/10.3390/foods8060208
  • Paucar-Menacho, L. M., Peñas, E., Dueñas, M., Frias, J. and Martínez-Villaluenga, C. (2017). Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT- Food Science and Technology, 76: 245–252. https://doi.org/10.1016/j.lwt.2016.07.038
  • Peiris, K. H. S., Bean, S. R., Chiluwal, A., Perumal, R. and Jagadish, S. V. K. (2019). Moisture effects on robustness of sorghum grain protein near-infrared spectroscopy calibration. Cereal Chemistry, 96(4): 678–688. https://doi.org/10.1002/cche.10164
  • Shreeja, K., Devi, S. S., Suneetha, W. J. and Prabhakar, B. N. (2021). Effect of germination on nutritional composition of common buckwheat (Fagopyrum esculentum Moench). International Research Journal of Pure and Applied Chemistry, 22(1): 1–7. https://doi.org/10.9734/irjpac/2021/v22i130350
  • Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Eain Hyder Rizvi, Q. U., Jan, S., Singh, T. P. and Dhaliwal, H. S. (2021). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science, 4: 917–925. https://doi.org/10.1016/j.crfs.2021.11.019
  • Tömösközi, S. and Langó, B. (2017). Chapter 7 - Buckwheat: Its Unique Nutritional and Health-Promoting Attributes. In: Gluten-Free Ancient Grains, Ed(s): J. R. N. Taylor and J. M. Awika. Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100866-9.00007-8
  • Turksoy, S., Guzel, M. and Guzel, N. (2024). Effect of sourdough addition on gluten-free sorghum bread fortified with plant-based protein and dietary fiber: Functional, textural, and structural properties. Cereal Chemistry, 101(3): 518–529. https://doi.org/10.1002/cche.10752
  • Wang, J., Bian, Z., Wang, S. and Zhang, L. (2020). Effects of ultrasonic waves, microwaves, and thermal stress treatment on the germination of Tartary buckwheat seeds. Journal of Food Process Engineering, 43(10): 1–9. https://doi.org/10.1111/jfpe.13494
  • Xu, L., Yang, N., Wu, F., Jin, Z. and Xu, X. (2018). Effect of acid pretreatment on the physicochemical and antioxidant properties of germinated adlay (Coix lachryma-jobi L.). Journal of Food Processing and Preservation, 42(2): e13511. https://doi.org/10.1111/jfpp.13511
  • Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y. and Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science, 80(5): H1111–H1119. https://doi.org/10.1111/1750-3841.12830
  • Zhang, Z. L., Zhou, M. L., Tang, Y., Li, F. L., Tang, Y. X., Shao, J. R., Xue, W. T. and Wu, Y. M. (2012). Bioactive compounds in functional buckwheat food. In Food Research International, 49(1): 389–395. https://doi.org/10.1016/j.foodres.2012.07.035

Karabuğdayın Ultrases-Destekli Çimlendirilmesi: Anti-Besinsel ve Antioksidan Bileşenler Üzerine Etkisi

Yıl 2026, Cilt: 23 Sayı: 1, 128 - 137, 07.01.2026
https://doi.org/10.33462/jotaf.1609302

Öz

Karabuğday antioksidan potansiyele sahip makro ve mikro besin elementleri açısından zengin bir pseudo-tahıldır. Fakat bileşiminde bulunan fitik asit ve kondanse tanenler gibi bazı anti-besinsel bileşenler karabuğdayın biyoyararlanımını azaltmaktadır. Çimlendirme tahıl tanelerinin besin değerinin artırılmasında eski ve doğal yollardan biridir. Kontrollü çimlendirme prosesleri, anti-besinsel bileşen konsantrasyonunu azaltarak pseudo-tahılların besin değerini artırmakta ve böylece besinlerin biyoyararlılığını iyileştirmektedir. Ultrases dalgaları enzim aktivitesini hızlandırırken hücre membran yapısını da etkileyerek kimyasal değişimlere neden olmaktadır. Bu nedenle, ultrases destekli çimlendirme işlemi besinsel ve biyoaktif özelliklerin artırılması ve anti-besinsel özelliklerin azaltılması için iyi bir alternatif olabilir. Bu çalışmada, karabuğday (Fagopyrum esculentum Moench. var. Aktaş) geleneksel ve ultrases destekli yöntemlerle 72 saat süresince çimlendirilmiştir. Çimlendirme süresince kimyasal kompozisyondaki değişimin yanı sıra anti-besinsel bileşenler, toplam fenolik madde miktarı, antioksidan aktivite ve renk değerlerindeki değişim de incelenmiştir. Çimlendirme işlemi sonrasında en yüksek toplam fenolik madde miktarı (498.57  2.93 mg GAE 100 g-1) ve antioksidan aktivite (10.91  1.62 mol TEAC g-1) ultrases destekli çimlendirilen karabuğday örneklerinde ölçülmüştür. Buna karşın 72 saatlik çimlendirme sürecinde renk değerlerinde belirgin bir değişim gözlenmemiştir. Karabuğday tanesinde çimlendirme sonucunda yağ (%3.06 – 3.39) ve protein (%12.56 – 15.05) konsantrasyonu artmıştır. Çimlendirilmemiş karabuğdayda nişasta konsantrasyonu %58.58 olarak belirlenirken ultrases destekli çimlendirme yöntemi kullanılan örneklerde 72 saat sonunda nişasta konsantrasyonu (%52.36) azalmıştır. Tanen miktarı ise %43 – 54 düzeyinde azalırken fitik asit miktarında daha sınırlı bir azalış olduğu belirlenmiştir. Ultrases destekli çimlendirme yönteminin, tahıl tanesinin kimyasal kompozisyonunun iyileştirilmesi, biyoaktif potansiyelin artırılması ve anti-besinsel özelliklerin azaltmasında faydalı bir yöntem olabileceği belirlenmiştir. Çimlendirilmiş tane, taneden elde edilen un veya diğer işlenmiş ürünler, çimlendirme ile artan fonksiyonel özellikleri nedeniyle tahılların geleneksel tüketimine daha iyi bir alternatif olabilirler.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Teşekkür

The authors thank the Ministry of Agriculture and Forestry, Çorum Department, Türkiye, for their help in supplying Aktaş buckwheat grain. The authors also thank Özge Aydoğdu for helping with NIR spectroscopy.

Kaynakça

  • Anonymous (2022a). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/site (Accessed Date: 20.12.2024).
  • Anonymous (2022b). Bahri Dağdaş International Agricultural Research Institute. Republic of Turkey Ministry of Agriculture and Forestry Bahri Dağdaş International Agricultural Research Institute Directorate. https://arastirma.tarimorman.gov.tr/bahridagdas (Access Date:15.12.2024).
  • Agregán, R., Guzel, N., Guzel, M., Bangar, S. P., Zengin, G., Kumar, M. and Lorenzo, J. M. (2023). The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. Food and Bioprocess Technology, 16(5): 961–986. https://doi.org/10.1007/s11947-022-02936-8
  • Aloo, S. O., Ofosu, F. K. and Oh, D. H. (2021). Effect of germination on alfalfa and buckwheat: Phytochemical profiling by UHPLC-ESI-QTOF-MS/MS, bioactive compounds, and in-vitro studies of their diabetes and obesity-related functions. Antioxidants, 10(10): 1613 https://doi.org/10.3390/antiox10101613
  • Altıkardeş, E. and Güzel, N. (2024). Impact of germination pre-treatments on buckwheat and Quinoa: Mitigation of anti-nutrient content and enhancement of antioxidant properties. Food Chemistry, X: 21: 101182. https://doi.org/10.1016/j.fochx.2024.101182
  • Altuner, F., Oral, E. and Baran, I. (2022). Determination of the effects of salt (NaCl) stress on germination in some barley (Hordeum vulgare L.) Varieties. Journal of Tekirdag Agricultural Faculty, 19(2): 39–50. https://doi.org/10.33462/jotaf.868594
  • Alvarez-Jubete, L., Arendt, E. K. and Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 60(SUPPL.4): 240–257. https://doi.org/10.1080/09637480902950597
  • Békés, F., Schoenlechner, R. and Tömösközi, S. (2017). Ancient Wheats and Pseudocereals for Possible use in Cereal-Grain Dietary Intolerances. In: Cereal Grains (Second Edition). Ed(s): C. Wrigley, I. Batey, and D. Miskelly, Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100719-8.00014-0
  • Berghofer, E. and Schoenlechner, R. (2002). Grain Amaranth. In: Pseudocereals and Less Common Cereals: Grain Properties and Utilization Potential. Ed(s): P. S. Belton and J. R. N. Taylor, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-09544-7_7
  • Beyaz, R. (2023). Germination and seedling properties of Lotus corniculatus L. under simulated drought stress. Journal of Tekirdag Agricultural Faculty, 20(4): 879–889. https://doi.org/10.33462/jotaf.1226444
  • Bhinder, S., Kumari, S., Singh, B., Kaur, A. and Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry, 346: 128915. https://doi.org/10.1016/j.foodchem.2020.128915
  • Bhinder, S., Singh, N. and Kaur, A. (2022). Impact of germination on nutraceutical, functional and gluten free muffin making properties of Tartary buckwheat (Fagopyrum tataricum). Food Hydrocolloids, 124: 107268. https://doi.org/10.1016/j.foodhyd.2021.107268
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1): 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Díaz Gonz´alez, D., Morawicki, R. and Mauromoustakos, A. (2019). Effect of nixtamalization treatment of three varieties of grain sorghum on the reduction of total phenolics and their subsequent enzymatic hydrolysis. Journal of Food Processing and Preservation, 43(9): e14067. https://doi.org/10.1111/jfpp.14067
  • Ding, J., Hou, G. G., Nemzer, B. V., Xiong, S., Dubat, A. and Feng, H. (2018). Effects of controlled germination on selected physicochemical and functional properties of whole-wheat flour and enhanced γ-aminobutyric acid accumulation by ultrasonication. Food Chemistry, 243: 214–221. https://doi.org/10.1016/j.foodchem.2017.09.128
  • Dizlek, H., Sertaç Özer, M., İnanç, E. and Gül, H (2009). Composition of buckwheat (Fagopyrum esculentum Moench) and its possible uses in food industry. GIDA: The Journal of Food, 34 (5): 317–324.
  • Gu, Z., Jin, Z., Schwarz, P., Rao, J., and Chen, B. (2023). Unraveling the role of germination days on the aroma variations of roasted barley malts via gas chromatography-mass spectrometry based untargeted and targeted flavoromics. Food Chemistry, 426: 136563. https://doi.org/10.1016/j.foodchem.2023.136563
  • Güzel, N. (2021). Morphometric and physico-chemical properties of cornelian cherry (Cornus mas L.) grown in Çorum, Turkey. Akademik Gıda, 19(4): 373–380. https://doi.org/10.24323/akademik-gida.1050750
  • Güzel, N., Taği, Ş. and Özkan, M. (2022). Effects of Moisture Contents and Storage Temperatures on the Physical, Chemical and Microbiological Qualities of Non-Sulfitted Dried Apricots. Journal of Agricultural Sciences, 28(4): 691–703. https://doi.org/10.15832/ankutbd.959820
  • Haug, W. and Lantzsch, H. ‐J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34(12): 1423–1426. https://doi.org/10.1002/jsfa.2740341217
  • Kokten, K., Cacan, E., Ozdemir, S., Ucar, R., Mokhtarzadeh, S., Kutlu, M. A. and Ekmekci, M. (2023). Chemical contents and fatty acids composition of the stems, leaves, flowers, and seeds of Fagopyrum esculentum. Chemistry of Natural Compounds, 59 (6): 1162–1165. https://doi.org/10.1007/s10600-023-04217-y
  • Kumari, S., Bhinder, S., Singh, B. and Kaur, A. (2023). Physicochemical properties, non-nutrients and phenolic composition of germinated freeze-dried flours of foxtail millet, proso millet and common buckwheat. Journal of Food Composition and Analysis, 115: 105043. https://doi.org/10.1016/j.jfca.2022.105043
  • Niro, S., D’Agostino, A., Fratianni, A., Cinquanta, L. and Panfili, G. (2019). Gluten-free alternative grains: Nutritional evaluation and bioactive compounds. Foods, 8(6): 208. https://doi.org/10.3390/foods8060208
  • Paucar-Menacho, L. M., Peñas, E., Dueñas, M., Frias, J. and Martínez-Villaluenga, C. (2017). Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT- Food Science and Technology, 76: 245–252. https://doi.org/10.1016/j.lwt.2016.07.038
  • Peiris, K. H. S., Bean, S. R., Chiluwal, A., Perumal, R. and Jagadish, S. V. K. (2019). Moisture effects on robustness of sorghum grain protein near-infrared spectroscopy calibration. Cereal Chemistry, 96(4): 678–688. https://doi.org/10.1002/cche.10164
  • Shreeja, K., Devi, S. S., Suneetha, W. J. and Prabhakar, B. N. (2021). Effect of germination on nutritional composition of common buckwheat (Fagopyrum esculentum Moench). International Research Journal of Pure and Applied Chemistry, 22(1): 1–7. https://doi.org/10.9734/irjpac/2021/v22i130350
  • Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Eain Hyder Rizvi, Q. U., Jan, S., Singh, T. P. and Dhaliwal, H. S. (2021). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science, 4: 917–925. https://doi.org/10.1016/j.crfs.2021.11.019
  • Tömösközi, S. and Langó, B. (2017). Chapter 7 - Buckwheat: Its Unique Nutritional and Health-Promoting Attributes. In: Gluten-Free Ancient Grains, Ed(s): J. R. N. Taylor and J. M. Awika. Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100866-9.00007-8
  • Turksoy, S., Guzel, M. and Guzel, N. (2024). Effect of sourdough addition on gluten-free sorghum bread fortified with plant-based protein and dietary fiber: Functional, textural, and structural properties. Cereal Chemistry, 101(3): 518–529. https://doi.org/10.1002/cche.10752
  • Wang, J., Bian, Z., Wang, S. and Zhang, L. (2020). Effects of ultrasonic waves, microwaves, and thermal stress treatment on the germination of Tartary buckwheat seeds. Journal of Food Process Engineering, 43(10): 1–9. https://doi.org/10.1111/jfpe.13494
  • Xu, L., Yang, N., Wu, F., Jin, Z. and Xu, X. (2018). Effect of acid pretreatment on the physicochemical and antioxidant properties of germinated adlay (Coix lachryma-jobi L.). Journal of Food Processing and Preservation, 42(2): e13511. https://doi.org/10.1111/jfpp.13511
  • Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y. and Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science, 80(5): H1111–H1119. https://doi.org/10.1111/1750-3841.12830
  • Zhang, Z. L., Zhou, M. L., Tang, Y., Li, F. L., Tang, Y. X., Shao, J. R., Xue, W. T. and Wu, Y. M. (2012). Bioactive compounds in functional buckwheat food. In Food Research International, 49(1): 389–395. https://doi.org/10.1016/j.foodres.2012.07.035
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Hububat Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Ebrar Altikardes Bu kişi benim 0000-0002-7261-2140

Nihal Güzel 0000-0002-2387-9009

Gönderilme Tarihi 29 Aralık 2024
Kabul Tarihi 14 Kasım 2025
Yayımlanma Tarihi 7 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 23 Sayı: 1

Kaynak Göster

APA Altikardes, E., & Güzel, N. (2026). Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content. Tekirdağ Ziraat Fakültesi Dergisi, 23(1), 128-137. https://doi.org/10.33462/jotaf.1609302
AMA Altikardes E, Güzel N. Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content. JOTAF. Ocak 2026;23(1):128-137. doi:10.33462/jotaf.1609302
Chicago Altikardes, Ebrar, ve Nihal Güzel. “Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content”. Tekirdağ Ziraat Fakültesi Dergisi 23, sy. 1 (Ocak 2026): 128-37. https://doi.org/10.33462/jotaf.1609302.
EndNote Altikardes E, Güzel N (01 Ocak 2026) Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content. Tekirdağ Ziraat Fakültesi Dergisi 23 1 128–137.
IEEE E. Altikardes ve N. Güzel, “Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content”, JOTAF, c. 23, sy. 1, ss. 128–137, 2026, doi: 10.33462/jotaf.1609302.
ISNAD Altikardes, Ebrar - Güzel, Nihal. “Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content”. Tekirdağ Ziraat Fakültesi Dergisi 23/1 (Ocak2026), 128-137. https://doi.org/10.33462/jotaf.1609302.
JAMA Altikardes E, Güzel N. Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content. JOTAF. 2026;23:128–137.
MLA Altikardes, Ebrar ve Nihal Güzel. “Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content”. Tekirdağ Ziraat Fakültesi Dergisi, c. 23, sy. 1, 2026, ss. 128-37, doi:10.33462/jotaf.1609302.
Vancouver Altikardes E, Güzel N. Ultrasound-Assisted Germination of Buckwheat: Impact on Anti-nutritional and Antioxidant Content. JOTAF. 2026;23(1):128-37.