Yıl 2020, Cilt 17 , Sayı 1, Sayfalar 97 - 107 2020-01-26

Ürün ve Yabancı Ot Ayrımı için Stereo Görme Sistemi Kullanılarak Bitki Yüksekliğinin Belirlenmesi
Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System

Ömer Barış Özlüoymak [1]


Stereo görme denemeleri, LabVIEW programlama dili kullanılarak laboratuvar koşullarında yapılmıştır. Denemelerde, yapay bir ürün bitkisi ile altı tür yapay yabancı ot örneği kullanılmıştır. Bitki yüksekliği ile ilgili bilgi; özellikle ilk büyüme döneminde, ürün bitkisi ile yabancı otların sınıflandırılması için önemli bir özelliktir. Yapay ürün bitkisi ile altı tür yabancı otu doğru şekilde birbirlerinden ayırt etmek için paralel optik eksenli iki özdeş web kamerası ve bir dizüstü bilgisayar kullanılarak, bir binoküler stereo görme sistemi geliştirilmiştir. Hesaplanan derinlik değerleri, aynı noktalardan alınan fiziksel ölçümlerle karşılaştırılmıştır. Sistemin ölçüm hatası; yapay ürün bitkisi için %3.50'den az iken, altı tane yapay yabancı ot örneği için %4.20'den az olmuştur. Yapay ürün bitkisi ve yabancı ot örnekleri için stereo görme ile fiziksel yükseklik ölçümleri arasında; güçlü, pozitif ve anlamlı doğrusal bir korelasyon vardır. Stereo görme ve fiziksel yükseklik ölçümleri arasındaki hesaplanan korelasyon değeri (R2), yapay ürün bitkisi için 0.962; yapay yabancı ot örnekleri için ise 0.978’dir. Bu stereo görme sistemi, sıra üzeri ilaçlama uygulamaları için otomatik ilaçlama sistemlerine entegre edilebilir.

The stereo vision experiments were conducted under the laboratory conditions by using LabVIEW programming language. An artificial crop plant and six types of artificial weed samples were used in the experiments. The information related to the plant height is a relevant feature to classify the crop plant and weed, especially in the early growth stage. A binocular stereo vision system was established by using two identical webcams with parallel optical axes and a laptop computer to discriminate the artificial crop plant and six types of weeds correctly. The calculated depth values were compared with the physical measurements for the same points. While the measurement error of the system was less than 3.50% for the artificial crop plant, it was less than 4.20% for six artificial weed samples. There were also strong, positive and significant linear correlations between the stereo vision and physical height measurements for artificial crop plant and weed samples. Calculated correlation values (R2) between the stereo vision and physical height measurements were 0.962 for the artificial crop plant and 0.978 for the artificial weed samples, respectively. That stereo vision system could be integrated into automatic spraying systems for intra-row spraying applications.

  • Andersen, H.J., Reng, L., Kirk, K. 2005. Geometric plant properties by relaxed stereo vision using simulated annealing. Computers and Electronics in Agriculture, 49, 219–232.
  • Birchfield, S., Tomasi, C. 1999. Depth discontinuities by pixel-to-pixel stereo. International Journal of Computer Vision, 35(3), 269–293.
  • Gonzalez-de-Soto, M., Emmi, L., Perez-Ruiz, M., Aguera, J., Gonzalez-de-Santos, P. 2016. Autonomous systems for precise spraying-evaluation of a robotised patch sprayer. Biosystems Engineering, 146, 165-182.
  • Holonec, R., Copindean, R., Dragan, F., Dan Zahara, V. 2014. Object tracking system using stereo vision and LabVIEW algorithms. Acta Electrotehnica, 55(1-2), 71-76.
  • Jafari, A., Mohtasebi, S.S., Jahromi, H.E., Omid, M. 2006a. Weed detection in sugar beet fields using machine vision. International Journal of Agriculture & Biology, 8(5), 602-605.
  • Jafari, A., Mohtasebi, S.S., Jahromi, H.E., Omid, M. 2006b. Color segmentation scheme for classifying weeds from sugar beet using machine vision. Iranian Journal of Information Science & Technology, 4(1), 1-12.
  • Li, D., Xu, L., Tang, X., Sun, S., Cai, X., Zhang, P. 2017. 3D imaging of greenhouse plants with an inexpensive binocular stereo vision system. Remote Sensing, 9, 508, 1-27.
  • Lin, T., Lai, T., Liu, C., Cheng, Y. 2011. A three-dimensional imaging approach for plant feature measurement using stereo vision. Tarım Makinaları Bilimi Dergisi (Journal of Agricultural Machinery Science), 7(2), 153-158.
  • Loghavi, M., Mackvandi, B.B. 2008. Development of a target oriented weed control system. Computers and Electronics in Agriculture, 63: 112-118.
  • Loni, R., Loghavi, M., Jafari, A. 2014. Design, development and evaluation of targeted discrete-flame weeding for inter-row weed control using machine vision. American Journal of Agricultural Science and Technology, 2(1), 17-30.
  • Özlüoymak, Ö.B., Bolat, A., Bayat, A., Güzel, E. 2019. Design, development, and evaluation of a target oriented weed control system using machine vision. Turkish Journal of Agriculture and Forestry, 43, 164-173.
  • Piron, A., Van der Heijden, F., Destain, M.F. 2011. Weed detection in 3D images. Precision Agriculture, 12, 607–622.
  • Sabancı, K., Aydın, C. 2014. Image processing based precision spraying robot. Journal of Agricultural Sciences, 20, 406-414.
  • Sabanci, K., Aydin, C. 2017. Smart robotic weed control system for sugar beet. Journal of Agricultural Science and Technology, 19, 73-83.
  • Shirzadifar, A.M., Loghavi, M., Raoufat, M.H. 2013. Development and evaluation of a real time site-specific inter-row weed management system. Iran Agricultural Research, 32(2), 39-54.
  • Tellaeche, A., Burgos-Artizzub, X.P., Pajaresa, G., Ribeirob, A. 2008. A vision-based method for weeds identification through the bayesian decision theory. Pattern Recognition Society, 41, 521-530.
  • Timmermann, C., Gerhads, R., Kühbauch, W. 2003. The economic impact of site-specific weed control. Precision Agriculture, 4, 249-260.
  • Xia, C., Li, Y., Chon, T., Lee, J. 2009. A stereo vision based method for autonomous spray of pesticides to plant leaves Paper presented at the IEEE International Symposium on Industrial Electronics (ISIE 2009), Seoul-Korea, 909-914.
  • Xiong, X., Yu, L., Yang, W., Liu, M., Jiang, N., Wu, D., Chen, G., Xiong, L., Liu, K., Liu, Q. 2017. A high‑throughput stereo‑imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods, 13(7), 1-17.
  • Yang, C., Prasher, S.O., Landry, J., Kok, R. 2002. A vegetation localization algorithm for precision farming. Biosystems Engineering, 81(2), 137-146.
  • Yang, C., Prasher, S.O., Landry, J., Ramaswamy, H.S. 2003. Development of an image processing system and a fuzzy algorithm for site-specific herbicide applications. Precision Agriculture, 4, 5-18.
Birincil Dil en
Konular Fen
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-6721-0964
Yazar: Ömer Barış Özlüoymak (Sorumlu Yazar)
Kurum: ÇUKUROVA ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, TARIM MAKİNELERİ VE TEKNOLOJİLERİ MÜHENDİSLİĞİ BÖLÜMÜ
Ülke: Turkey


Tarihler

Başvuru Tarihi : 30 Eylül 2019
Kabul Tarihi : 25 Kasım 2019
Yayımlanma Tarihi : 26 Ocak 2020

Bibtex @araştırma makalesi { jotaf626709, journal = {Tekirdağ Ziraat Fakültesi Dergisi}, issn = {1302-7050}, eissn = {2146-5894}, address = {}, publisher = {Namık Kemal Üniversitesi}, year = {2020}, volume = {17}, pages = {97 - 107}, doi = {10.33462/jotaf.626709}, title = {Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System}, key = {cite}, author = {Özlüoymak, Ömer Barış} }
APA Özlüoymak, Ö . (2020). Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System. Tekirdağ Ziraat Fakültesi Dergisi , 17 (1) , 97-107 . DOI: 10.33462/jotaf.626709
MLA Özlüoymak, Ö . "Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System". Tekirdağ Ziraat Fakültesi Dergisi 17 (2020 ): 97-107 <https://dergipark.org.tr/tr/pub/jotaf/issue/52235/626709>
Chicago Özlüoymak, Ö . "Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System". Tekirdağ Ziraat Fakültesi Dergisi 17 (2020 ): 97-107
RIS TY - JOUR T1 - Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System AU - Ömer Barış Özlüoymak Y1 - 2020 PY - 2020 N1 - doi: 10.33462/jotaf.626709 DO - 10.33462/jotaf.626709 T2 - Tekirdağ Ziraat Fakültesi Dergisi JF - Journal JO - JOR SP - 97 EP - 107 VL - 17 IS - 1 SN - 1302-7050-2146-5894 M3 - doi: 10.33462/jotaf.626709 UR - https://doi.org/10.33462/jotaf.626709 Y2 - 2019 ER -
EndNote %0 Tekirdağ Ziraat Fakültesi Dergisi Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System %A Ömer Barış Özlüoymak %T Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System %D 2020 %J Tekirdağ Ziraat Fakültesi Dergisi %P 1302-7050-2146-5894 %V 17 %N 1 %R doi: 10.33462/jotaf.626709 %U 10.33462/jotaf.626709
ISNAD Özlüoymak, Ömer Barış . "Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System". Tekirdağ Ziraat Fakültesi Dergisi 17 / 1 (Ocak 2020): 97-107 . https://doi.org/10.33462/jotaf.626709
AMA Özlüoymak Ö . Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System. Tekirdağ Ziraat Fakültesi Dergisi. 2020; 17(1): 97-107.
Vancouver Özlüoymak Ö . Determination of Plant Height for Crop and Weed Discrimination by Using Stereo Vision System. Tekirdağ Ziraat Fakültesi Dergisi. 2020; 17(1): 107-97.