Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi ve Renk Kriterleri Özelliklerine Etkisi

Yıl 2025, Cilt: 22 Sayı: 1, 257 - 267
https://doi.org/10.33462/jotaf.1553496

Öz

Karpuz birçok besin değerini bünyesinde barındıran ve bol sulu kabakgillerden olan tarımsal bir üründür. Karpuz cipsi üretiminin gelişmesi hem ülke olarak hem de küresel boyutta taze ürünlere alternatif fonksiyonel bir gıda olması açısından önemlidir. Bu çalışmada, karpuz cipsi üretimi için mikrodalga tekniği kullanılarak 180, 360 ve 540 W güç değerlerinde taze karpuz dilimleri kurutulmuştur. Çalışmanın amacı, karpuz cipsi üretiminde kinetik, kalite özellikleri ve enerji tüketim parametreleri açısından en uygun mikrodalga güç seviyesini tespit etmektir. Kurutma işlemlerinde için kuruma süresi, kuruma oranı, nem oranı, renk parametreleri, efektif nem difüzyonu, özgül nem çekme oranı (SMER) ve özgül enerji tüketimi (SEC) değerleri belirlenmiştir. Karpuz cipsi üretiminde en kısa kuruma süresi 540 W güçte kurutulan örneklerde 11 dakika olarak belirlenmiştir. En uzun kuruma süresi ise 180 W güçte 48.50 dakika olarak belirlenmiştir. Kurutma işlemlerinde 180, 360 ve 540 W mikrodalga güç değerleri için tespit edilen kuruma oranları sırayla 0.200, 0.530 ve 0.939 g nem g kuru madde.dakika-1 olarak tespit edilmiştir. Taze karpuz dilimlerin L, a ve b değerleri sırasıyla 43.17, 31.32 ve 20.59 olarak belirlenmiştir. Taze dilimlere en yakın renk değerleri 360 W güç değerinde kurutulan örneklerde belirlenmiştir. Mikrodalgada 360 W güç değerinde kurutulan örneklerin L, a ve b değerleri sırasıyla 41.35, 16.56 ve 12.07 olarak tespit edilmiştir. Kurutma işlemlerinin efektif nem difüzyon değerlerinin 3.74x10-11-2.27.10-10 m2.s-1 arasında değiştiği tespit edilmiştir. En yüksek özgül nem çekme oranı (SMER) 540 W güçte kurutulan örneklerde ortalama 0.0662 kg.kWh-1 olarak belirlenmiştir. En düşük özgül enerji tüketim (SEC) değeri 540 W güçte kurutulan örneklerde 14.52 kW.kg-1 olarak hesaplanmıştır. Bu çalışmada kuruma süresi, efektif nem difüzyonu ve enerji parametreleri açısından karpuz dilimlerinin mikrodalgada 540 W güç değerinde kurutulması önerilmektedir. Renk değerleri açısından karpuz cipsi üretiminde 360 W mikrodalga güç değerinde kurutulması önerilmektedir.

Etik Beyan

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

Kaynakça

  • Aksüt, B., Dursun, S. K., Polatcı, H. and Taşova, M. (2023). Effects of microwave dryers on the properties of Jerusalem artichoke: physico-chemical, thermo-physical, energy consumption. Journal of Microwave Power and Electromagnetic Energy, 57(1): 28-43. https://doi.org/10.1080/08327823.2023.2166005.
  • Akyıldız, A., Polat, S. ve Ağçam, E. (2017). Konveksiyonel ve dondurarak kurutma yöntemlerinin karpuzun bazı kalite özelliklerine etkisi. Gıda, 42(2): 169-176. https://doi.org/10.15237/gida.GD16070.
  • Alemrajabi, A. A., Rezaee, F., Mirhosseini, M. and Esehaghbeygi, A. (2012). Comparative evaluation of the effects of electrohydrodynamic, oven, and ambient air on carrot cylindrical slices during drying process. Drying Technology, 30: 88–96. https://doi.org/10.1080/07373937.2011.608913.
  • Arslan, A., Soysal, Y. and Keskin, M. (2021). Infrared drying kinetics and color qualities of organic and conventional sweet red peppers. Journal of Tekirdag Agricultural Faculty, 18(2): 260-272. https://doi.org/10.33462/jotaf.750623.
  • Bonazzi, C. and Dumoulin, E. (2011). Quality changes in food materials as influenced by drying processes. Modern Drying Technology, 3: 1-20. https://doi.org/10.1002/9783527631667.ch1.
  • Bustos, M. C., Rocha-Parra, D., Sampedro, I., Pascual-Teresa, S. and Leon, A. E. (2018). The Influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. Journal of Agricultural and Food Chemistry, 66(11): 2714-2723. https://doi.org/10.1021/acs.jafc.7b05395.
  • Chakraborty, R. and Mondal, P. (2017). Effects of intermittent CO2 convection under far-infrared radiation on vacuum drying of pre-osmodehydrated watermelon. Journal of the Science of Food and Agriculture, 97(11): 3822-3830. https://doi.org/10.1002/jsfa.8246.
  • Corzo, O., Bracho, N., Pereira, A. and Vasquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. LWT - Food Science and Technology, 41(10): 2023-2028.
  • Dhurve, P., Arora, V. K., Yadav, D. K. and Malakar, S. (2022). Drying kinetics, mass transfer parameters, and specific energy consumption analysis of watermelon seeds dried using the convective dryer, Materials Today: Proceedings, 59(1): 926-932. https://doi.org/10.1016/j.matpr.2022.02.008.
  • Doymaz, İ. (2014). Experimental study and mathematical modeling of thin-layer infrared drying of watermelon seeds. Journal of Food Processing and Preservation, 38(3): 1377-1384. https://doi.org/10.1111/jfpp.12217.
  • Doymaz, İ., Tugrul, N. and Pala, M. (2006). Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 77: 559-565.
  • Du, L. J., Gao, Q. H., Ji, X. L., Ma, Y. J., Xu, F. Y. and Wang, M. (2013). Comparison of flavonoids, phenolic acids, and antioxidant activity of explosion-puffed and sun-dried jujubes (ziziphus jujuba mill.). Journal of Agriculture Food Chemical, 61: 11840-11847.
  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44: 71-78.
  • Mujumdar, A. S. and Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food Bioprocess Technology, 3: 843-852.
  • Nakilcioğlu-Taş, E., Coşan, G. and Ötleş, S. (2021). Optimization of process conditions to improve the quality properties of healthy watermelon snacks developed by hot-air drying. Journal of Food Measurement and Characterization, 15: 2146–2160. https://doi.org/10.1007/s11694-020-00808-3.
  • Nguyen, T. V. L., Nguyen, P. B. D., Tran, T. T. V., Tran, B. L. and Huynh, T. P. (2022). Low-temperature microwave-assisted drying of sliced bitter melon: Drying kinetics and rehydration characteristics. Journal of Food Process Engineering, 45(12): e14177. https://doi.org/10.1111/jfpe.14177.
  • Oberoi, D. P. S. and Sogi, D. S. (2015a). Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. Journal of Food Engineering, 165: 172-178. https://doi.org/10.1016/j.jfoodeng.2015.06.024
  • Oberoi, D. P. S. and Sogi, D. S. (2015b). Drying kinetics, moisture diffusivity and lycopene retention of watermelon pomace in different dryers. Journal of Food Science and Technology, 52: 7377-7384. https://doi.org/10.1007/s13197-015-1863-7
  • Purohit, P., Kumar, A. and Kandpal. T. C. (2006). Solar drying vs. open sun drying: A framework for financial evaluation. Solar Energy, 80(12): 1568-1579
  • Ramallo, L. A. and Mascheroni, R. H. (2012). Quality evoluation of pineapple fruit during drying process. Food and Bioproducts Processing, 99: 275-283
  • Saxena, A., Bawa, A. S. and Raju, P. S. (2012). Effect of minimal processing on quality of jackfruit (Artocarpus heterophyllus L.) bulbs using response surface methodology. Food and Bioprocess Technology, 5(1): 348–358
  • Sharma, A., Chen, C. R. and Lan, N. V. (2009). Solar-energy drying systems: A review. Renewable Sustainable Energy Review, 13(6–7): 1185-1210
  • Song, J., Wang, X., Li, D. and Liu, C. (2017). Degradation kinetics of carotenoids and visual colour in pumpkin (Cucurbita maxima L.) slices during microwave-vacuum drying. International Journal of Food Properties, 20(sup1): 632-643. https://doi.org/10.1080/10942912.2017.1306553
  • Surendhar, A., Sivasubramanian, V., Vidhyeswari, D. and Deepanraj, B. (2019). Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. Journal of Thermal Analysis and Calorimetry, 136: 185–197
  • Taib, M. R., Muhamad, I. I., Ngo, C. L. and Ng, P. S. (2013). Drying kinetics, rehydration characteristics and sensory evaluation of microwave vacuum and convective hot air dehydrated jackfruit bulbs. Jurnal Teknologi, 65(1): 51-57.
  • Tan, M, Chua, K. J., Mujumdar, A. S. and Chou, S. K. (2001). Effect of osmotic pre-treatment and infrared radiation of drying rate and color changes during drying of potato and pineapple. Drying Technology, 19(9): 2193-2207.
  • Taşkın, O., İzli, G. and İzli, N. (2021). Physicochemical and morphological properties of European cranberry bush powder manufactured by freeze-drying. International Journal of Fruit Science, 21(1): 1008-1017.
  • Taşova, M. and Dursun, S. K. (2024). Comparison of microwave assisted foam drying processes to improve the physicochemical properties and to reduce GHG values of the melon powder processes. Biomass Conversion Biorefinery, 1-8. https://doi.org/10.1007/s13399-024-05680-5
  • Taşova, M., Dursun, S. K., Özalan, O. N. and Çezik, F. (2023a). Effects of osmotic processes on the bio-active properties and physico-chemical of pumpkin chips produced by convective drying. Iranian Journal of Chemistry and Chemical Engineering, 43(4). https://doi.org/10.30492/IJCCE.2023.2001502.6008
  • Taşova, M., Polatcı, H. and Dursun, S. K. (2023b). Comparison of the performance of a modified temperature-controlled microwave dryer to improve heat-mass transfer, increase energy efficiency and preserve quality characteristics of shad (Alosa fallax nilotica). International Communications in Heat and Mass Transfer, 144: 106772. https://doi.org/10.1016/j.icheatmasstransfer.2023.106772
  • Tepe, T. K. (2023). Kavun ve karpuz cipsi üretiminde farklı kurutma yöntemleri ve ön işlemlerin bazı kuruma ve kalite parametreleri üzerine etkisi. (Doktora Tezi) Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, Türkiye.
  • Tunckal, C., Ozkan-Karabacak, A., Tamer, C.E., Yolcı-Omeroglu, P. and Goksel, Z. (2022). Mathematical modelling and optimization of melon slice drying with response surface methodology in a heat pump drying system. Latin American Applied Research, 52: 101–110. https://doi.org/10.52292/j.laar.2022.851
  • Yıldız, Z. ve Reyhan, S. (2023). Ozmotik dehidrasyon ve mikrodalga kurutma ile birlikte limon halkalarının kurutma koşullarının optimizasyonu. Tekirdağ Ziraat Fakültesi Dergisi, 20(4): 845-856. https://doi.org/10.33462/jotaf.1222365
  • Yılmaz, A. and Alibaş, İ. (2021). The impact of drying methods on quality parameters of purple basil leaves. Journal of Food Process Preservation, 45: e15638
  • Zadhossein, S., Abbaspour-Gilandeh, Y., Kaveh, M., Szymanek, M., Khalife, E. D. Samuel, O., Amiri, M. and Dziwulski, J. (2021). Exergy and energy analyses of microwave dryer for cantaloupe slice and prediction of thermodynamic parameters using ANN and ANFIS algorithms. Energies, 14(16): 4838. https://doi.org/10.3390/en14164838
  • Zia, S., Khan, M. R. and Aadil, R. M. (2023). Kinetic modeling of different drying techniques and their influence on color, bioactive compounds, antioxidant indices and phenolic profile of watermelon rind. Food Measure, 17: 1068–1081. https://doi.org/10.1007/s11694-022-01674-x
  • Zou, K., Teng, J., Huang, L., Dai, X. and Wei, B. (2013). Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT Food Science Technology, 51: 253–259.

Effect of Power Values on Drying Kinetics, Energy Consumption and Color Criteria Properties of Watermelon Chips Produced by Microwave Drying Method

Yıl 2025, Cilt: 22 Sayı: 1, 257 - 267
https://doi.org/10.33462/jotaf.1553496

Öz

Watermelon is an agricultural product belonging to the cucurbit family, known for its high water content and various nutritional values. The development of watermelon chip production is important as it serves as a functional food alternative to fresh products, both nationally and globally. In this study, fresh watermelon slices were dried using the microwave technique at power values of 180, 360, and 540 W. The aim of the study is to identify the optimal microwave power values in terms of drying kinetics, quality characteristics, and energy consumption parameters for watermelon chip production. During the drying processes, the drying time, drying rate, moisture content, color parameters, effective moisture diffusion, specific moisture extraction rate (SMER), and specific energy consumption (SEC) values were determined. The shortest drying time was found to be 11 minutes for samples dried at 540 W. The longest drying time was determined to be 48.50 minutes at 180 W. The drying rates for 180, 360, and 540 W microwave power values were found to be 0.200, 0.530, and 0.939 g moisture g.dry matter.minute-1, respectively. The L, a, and b values of fresh watermelon slices were determined as 43.17, 31.32, and 20.59, respectively. The closest color values to fresh slices were found in samples dried at 360 W, with L, a, and b values of 41.35, 16.56, and 12.07, respectively. The effective moisture diffusion values during the drying processes were found to range between 3.74x10-11 and 2.27x10-10 m².s-1. The highest SMER was determined to be an average of 0.0662 kg.kWh-1 for samples dried at 540 W. The lowest SEC value was calculated as 14.52 kW.kg-1 for samples dried at 540 W. This study recommends drying watermelon slices in a microwave at a power level of 540 W in terms of drying time, effective moisture diffusion, and energy parameters. For color values, drying at 360 W microwave power is suggested for watermelon chip production.

Kaynakça

  • Aksüt, B., Dursun, S. K., Polatcı, H. and Taşova, M. (2023). Effects of microwave dryers on the properties of Jerusalem artichoke: physico-chemical, thermo-physical, energy consumption. Journal of Microwave Power and Electromagnetic Energy, 57(1): 28-43. https://doi.org/10.1080/08327823.2023.2166005.
  • Akyıldız, A., Polat, S. ve Ağçam, E. (2017). Konveksiyonel ve dondurarak kurutma yöntemlerinin karpuzun bazı kalite özelliklerine etkisi. Gıda, 42(2): 169-176. https://doi.org/10.15237/gida.GD16070.
  • Alemrajabi, A. A., Rezaee, F., Mirhosseini, M. and Esehaghbeygi, A. (2012). Comparative evaluation of the effects of electrohydrodynamic, oven, and ambient air on carrot cylindrical slices during drying process. Drying Technology, 30: 88–96. https://doi.org/10.1080/07373937.2011.608913.
  • Arslan, A., Soysal, Y. and Keskin, M. (2021). Infrared drying kinetics and color qualities of organic and conventional sweet red peppers. Journal of Tekirdag Agricultural Faculty, 18(2): 260-272. https://doi.org/10.33462/jotaf.750623.
  • Bonazzi, C. and Dumoulin, E. (2011). Quality changes in food materials as influenced by drying processes. Modern Drying Technology, 3: 1-20. https://doi.org/10.1002/9783527631667.ch1.
  • Bustos, M. C., Rocha-Parra, D., Sampedro, I., Pascual-Teresa, S. and Leon, A. E. (2018). The Influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. Journal of Agricultural and Food Chemistry, 66(11): 2714-2723. https://doi.org/10.1021/acs.jafc.7b05395.
  • Chakraborty, R. and Mondal, P. (2017). Effects of intermittent CO2 convection under far-infrared radiation on vacuum drying of pre-osmodehydrated watermelon. Journal of the Science of Food and Agriculture, 97(11): 3822-3830. https://doi.org/10.1002/jsfa.8246.
  • Corzo, O., Bracho, N., Pereira, A. and Vasquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. LWT - Food Science and Technology, 41(10): 2023-2028.
  • Dhurve, P., Arora, V. K., Yadav, D. K. and Malakar, S. (2022). Drying kinetics, mass transfer parameters, and specific energy consumption analysis of watermelon seeds dried using the convective dryer, Materials Today: Proceedings, 59(1): 926-932. https://doi.org/10.1016/j.matpr.2022.02.008.
  • Doymaz, İ. (2014). Experimental study and mathematical modeling of thin-layer infrared drying of watermelon seeds. Journal of Food Processing and Preservation, 38(3): 1377-1384. https://doi.org/10.1111/jfpp.12217.
  • Doymaz, İ., Tugrul, N. and Pala, M. (2006). Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 77: 559-565.
  • Du, L. J., Gao, Q. H., Ji, X. L., Ma, Y. J., Xu, F. Y. and Wang, M. (2013). Comparison of flavonoids, phenolic acids, and antioxidant activity of explosion-puffed and sun-dried jujubes (ziziphus jujuba mill.). Journal of Agriculture Food Chemical, 61: 11840-11847.
  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44: 71-78.
  • Mujumdar, A. S. and Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food Bioprocess Technology, 3: 843-852.
  • Nakilcioğlu-Taş, E., Coşan, G. and Ötleş, S. (2021). Optimization of process conditions to improve the quality properties of healthy watermelon snacks developed by hot-air drying. Journal of Food Measurement and Characterization, 15: 2146–2160. https://doi.org/10.1007/s11694-020-00808-3.
  • Nguyen, T. V. L., Nguyen, P. B. D., Tran, T. T. V., Tran, B. L. and Huynh, T. P. (2022). Low-temperature microwave-assisted drying of sliced bitter melon: Drying kinetics and rehydration characteristics. Journal of Food Process Engineering, 45(12): e14177. https://doi.org/10.1111/jfpe.14177.
  • Oberoi, D. P. S. and Sogi, D. S. (2015a). Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. Journal of Food Engineering, 165: 172-178. https://doi.org/10.1016/j.jfoodeng.2015.06.024
  • Oberoi, D. P. S. and Sogi, D. S. (2015b). Drying kinetics, moisture diffusivity and lycopene retention of watermelon pomace in different dryers. Journal of Food Science and Technology, 52: 7377-7384. https://doi.org/10.1007/s13197-015-1863-7
  • Purohit, P., Kumar, A. and Kandpal. T. C. (2006). Solar drying vs. open sun drying: A framework for financial evaluation. Solar Energy, 80(12): 1568-1579
  • Ramallo, L. A. and Mascheroni, R. H. (2012). Quality evoluation of pineapple fruit during drying process. Food and Bioproducts Processing, 99: 275-283
  • Saxena, A., Bawa, A. S. and Raju, P. S. (2012). Effect of minimal processing on quality of jackfruit (Artocarpus heterophyllus L.) bulbs using response surface methodology. Food and Bioprocess Technology, 5(1): 348–358
  • Sharma, A., Chen, C. R. and Lan, N. V. (2009). Solar-energy drying systems: A review. Renewable Sustainable Energy Review, 13(6–7): 1185-1210
  • Song, J., Wang, X., Li, D. and Liu, C. (2017). Degradation kinetics of carotenoids and visual colour in pumpkin (Cucurbita maxima L.) slices during microwave-vacuum drying. International Journal of Food Properties, 20(sup1): 632-643. https://doi.org/10.1080/10942912.2017.1306553
  • Surendhar, A., Sivasubramanian, V., Vidhyeswari, D. and Deepanraj, B. (2019). Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. Journal of Thermal Analysis and Calorimetry, 136: 185–197
  • Taib, M. R., Muhamad, I. I., Ngo, C. L. and Ng, P. S. (2013). Drying kinetics, rehydration characteristics and sensory evaluation of microwave vacuum and convective hot air dehydrated jackfruit bulbs. Jurnal Teknologi, 65(1): 51-57.
  • Tan, M, Chua, K. J., Mujumdar, A. S. and Chou, S. K. (2001). Effect of osmotic pre-treatment and infrared radiation of drying rate and color changes during drying of potato and pineapple. Drying Technology, 19(9): 2193-2207.
  • Taşkın, O., İzli, G. and İzli, N. (2021). Physicochemical and morphological properties of European cranberry bush powder manufactured by freeze-drying. International Journal of Fruit Science, 21(1): 1008-1017.
  • Taşova, M. and Dursun, S. K. (2024). Comparison of microwave assisted foam drying processes to improve the physicochemical properties and to reduce GHG values of the melon powder processes. Biomass Conversion Biorefinery, 1-8. https://doi.org/10.1007/s13399-024-05680-5
  • Taşova, M., Dursun, S. K., Özalan, O. N. and Çezik, F. (2023a). Effects of osmotic processes on the bio-active properties and physico-chemical of pumpkin chips produced by convective drying. Iranian Journal of Chemistry and Chemical Engineering, 43(4). https://doi.org/10.30492/IJCCE.2023.2001502.6008
  • Taşova, M., Polatcı, H. and Dursun, S. K. (2023b). Comparison of the performance of a modified temperature-controlled microwave dryer to improve heat-mass transfer, increase energy efficiency and preserve quality characteristics of shad (Alosa fallax nilotica). International Communications in Heat and Mass Transfer, 144: 106772. https://doi.org/10.1016/j.icheatmasstransfer.2023.106772
  • Tepe, T. K. (2023). Kavun ve karpuz cipsi üretiminde farklı kurutma yöntemleri ve ön işlemlerin bazı kuruma ve kalite parametreleri üzerine etkisi. (Doktora Tezi) Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, Türkiye.
  • Tunckal, C., Ozkan-Karabacak, A., Tamer, C.E., Yolcı-Omeroglu, P. and Goksel, Z. (2022). Mathematical modelling and optimization of melon slice drying with response surface methodology in a heat pump drying system. Latin American Applied Research, 52: 101–110. https://doi.org/10.52292/j.laar.2022.851
  • Yıldız, Z. ve Reyhan, S. (2023). Ozmotik dehidrasyon ve mikrodalga kurutma ile birlikte limon halkalarının kurutma koşullarının optimizasyonu. Tekirdağ Ziraat Fakültesi Dergisi, 20(4): 845-856. https://doi.org/10.33462/jotaf.1222365
  • Yılmaz, A. and Alibaş, İ. (2021). The impact of drying methods on quality parameters of purple basil leaves. Journal of Food Process Preservation, 45: e15638
  • Zadhossein, S., Abbaspour-Gilandeh, Y., Kaveh, M., Szymanek, M., Khalife, E. D. Samuel, O., Amiri, M. and Dziwulski, J. (2021). Exergy and energy analyses of microwave dryer for cantaloupe slice and prediction of thermodynamic parameters using ANN and ANFIS algorithms. Energies, 14(16): 4838. https://doi.org/10.3390/en14164838
  • Zia, S., Khan, M. R. and Aadil, R. M. (2023). Kinetic modeling of different drying techniques and their influence on color, bioactive compounds, antioxidant indices and phenolic profile of watermelon rind. Food Measure, 17: 1068–1081. https://doi.org/10.1007/s11694-022-01674-x
  • Zou, K., Teng, J., Huang, L., Dai, X. and Wei, B. (2013). Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT Food Science Technology, 51: 253–259.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyosistem
Bölüm Makaleler
Yazarlar

Muhammed Taşova 0000-0001-5025-0807

Samet Kaya Dursun 0000-0002-8230-3560

Erken Görünüm Tarihi 14 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 20 Eylül 2024
Kabul Tarihi 3 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 1

Kaynak Göster

APA Taşova, M., & Dursun, S. K. (2025). Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi ve Renk Kriterleri Özelliklerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 22(1), 257-267. https://doi.org/10.33462/jotaf.1553496
AMA Taşova M, Dursun SK. Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi ve Renk Kriterleri Özelliklerine Etkisi. JOTAF. Ocak 2025;22(1):257-267. doi:10.33462/jotaf.1553496
Chicago Taşova, Muhammed, ve Samet Kaya Dursun. “Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi Ve Renk Kriterleri Özelliklerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 22, sy. 1 (Ocak 2025): 257-67. https://doi.org/10.33462/jotaf.1553496.
EndNote Taşova M, Dursun SK (01 Ocak 2025) Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi ve Renk Kriterleri Özelliklerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi 22 1 257–267.
IEEE M. Taşova ve S. K. Dursun, “Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi ve Renk Kriterleri Özelliklerine Etkisi”, JOTAF, c. 22, sy. 1, ss. 257–267, 2025, doi: 10.33462/jotaf.1553496.
ISNAD Taşova, Muhammed - Dursun, Samet Kaya. “Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi Ve Renk Kriterleri Özelliklerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 22/1 (Ocak 2025), 257-267. https://doi.org/10.33462/jotaf.1553496.
JAMA Taşova M, Dursun SK. Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi ve Renk Kriterleri Özelliklerine Etkisi. JOTAF. 2025;22:257–267.
MLA Taşova, Muhammed ve Samet Kaya Dursun. “Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi Ve Renk Kriterleri Özelliklerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi, c. 22, sy. 1, 2025, ss. 257-6, doi:10.33462/jotaf.1553496.
Vancouver Taşova M, Dursun SK. Mikrodalga Kurutma Yöntemiyle Üretilen Karpuz Cipslerinde Güç değerlerinin Kuruma Kinetikleri, Enerji Tüketimi ve Renk Kriterleri Özelliklerine Etkisi. JOTAF. 2025;22(1):257-6.