Farklı Alkalilerle Aktifleştirilen Uçucu Kül Esaslı Harçların Bazı Mekanik ve Fiziksel Özelliklerinin İncelenmesi
Yıl 2019,
Sayı: 9, 11 - 19, 01.01.2019
Murat Çavuş
,
Melih Naci Ağaoğlu
Öz
Bu çalışmada, Uçucu Kül + Zeolit ve Uçucu Kül + Diatomit mineralleri ile hazırlanan karışımların, sırasıyla Sodyum Hidroksit NaOH , Potasyum Hidroksit KOH ve Sodyum Silikat Na₂SiO₃ alkalileri kullanılarak elde edilen harçların 75 °C’da 24 saat kür ortamında bekletilerek 6 seri deney numunesi hazırlanmıştır. Elde edilen numuneler üzerinde mekanik ve fiziksel deneyler gerçekleştirilmiş ve çıkan sonuçlar karşılaştırmalı olarak incelenmiştir. Tüm karışımlarda bütün bileşenler ve kür şartları sabit tutulmuş yalnızca alkali türü değiştirilmiştir. Numuneler üzerinde 1., 7. ve 28. Günde yapılan basınç dayanımı deneyleri sonucunda en iyi değerin sodyum silikatlı karışımlarda elde edildiği görülmüştür. Genel olarak potasyum hidroksitin bu karışımlar için kayda değer bir etkisinin olmadığı görülmüştür.
Kaynakça
- [1]. Gartner E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9): 1489-1498.
- [2]. Davidovits J. (2008). Geopolymer chemistry and applications, 3rd Ed, Institut Géopolymère, St. Quentin, France.
- [3]. Tokyay M, Ayturan P. (2010). Mineral katkıların alkali ile aktive edilmesi: Bölüm 2. Çimento ve Beton Dünyası, 15(89): 77-91.
- [4]. Sukmak P, Horpibulsuk S, Shen S-L, Chindaprasirt P, Suksiripattanapong C, (2013). Factors influencing strength development in clay–fly ash geopolymer. Construction and Building Materials, 47: 1125–1136.
- [5]. Provis J L, Deventer J S J, (2009). Geopolymers: Structures, processing, properties and industrial applications. Woodhead Publishing, Abingdon, UK.
- [6]. Şahin M, Mahyar M, Erdoğan S T, (2015). Afşin Elbistan Uçucu Külü ve Yüksek Fırın Cürufu İçeren Çimentosuz Bağlayıcılar Hazırlanması, 9.Ulusal Beton Kongresi, Antalya, Türkiye.
- [7]. Rangan, B V, (2008). Fly ash-based geopolymer concrete. Research Report GC 4, Engineering Faculty, Curtin University of Technology, Perth, Australia
- [8]. Haqn E, Padmanabhan S K, Licciulli A, (2014). Synthesis and characteristic sof fly ash and bottom ash based geopolymers–A comparative study. Ceramics International, 40: 2965–2971.
- [9]. Ramani P V, Chinnaraj P K, (2015). Geopolymer concrete with ground granulated blast furnace slag and black rice husk ash. Gradevinar, 67 (8): 741-748.
- [10]. Akcaozoğlu S, Ulu C, (2014). Recycling of waste PET granules as aggregate in alkaliactivated blast furnace slag/metakaolin blends. Construction and Building Materials, 58: 31–37.
- [11]. Bakharev T, (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35: 1233– 1246.
- [12]. Rattanasa U, Chindaprasirt P, (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22 (12): 1073-1078.
- [13]. Chindaprasirt P, Jaturapitakkul C, Chaleec W, Rattanasak U, (2009). Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management, 29 (2): 539-543.
- [14]. Temuujin, J., Williams, R.P., Riessen, A., (2009), “Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature”, Journal of Materials Processing Technology, 209 (12): 5276-5280.
- [15]. Topçu İ.B, Kurama H, Karakurt, C, (2007). Utilization of bottom ash in aerated concrete production. Cement and Concrete World, 12(68): 56-65.
- [16]. Anonim (2019). https://www.enerji.gov.tr/tr-tr/sayfalar/elektrik, (Erişim 01.03.2019)
- [17]. Erdoğan T Y, (1997). Admixtures for Concrete, METU Press, Ankara, Türkiye.
- [18]. Erdoğan B, Katnaş F, Türker P, Yeğinobali A, (2003). Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri. Türkiye Çimento Müstahsilleri Birliği, Ankara.
- [19]. Tekin İ, (2016). Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127: 607–617.
Investigation of Some Mechanical and Physical Properties of Different Alkalines Activated Fly Ash Based Mortars
Yıl 2019,
Sayı: 9, 11 - 19, 01.01.2019
Murat Çavuş
,
Melih Naci Ağaoğlu
Öz
In this study, the mixtures were prepared with fly ash + zeolite and fly ash + diatomite minerals. Mortars are obtained by using sodium hydroxide NaOH , potassium hydroxide KOH and sodium silicate Na₂SiO₃ alkalis respectively. 6 series test specimens were prepared by holding the obtained mortars at 75°C for 24 hours. Mechanical and physical experiments were performed on the obtained samples and the results were examined comparatively. All components and all curing conditions were kept constant and only the alkali type was changed in all mixtures. As a result of the compressive strength tests performed on the 1st, 7th and 28th days on specimens, the best value was obtained in sodium silicate mixtures. In general, potassium hydroxide has no significant effect for these mixtures.
Kaynakça
- [1]. Gartner E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9): 1489-1498.
- [2]. Davidovits J. (2008). Geopolymer chemistry and applications, 3rd Ed, Institut Géopolymère, St. Quentin, France.
- [3]. Tokyay M, Ayturan P. (2010). Mineral katkıların alkali ile aktive edilmesi: Bölüm 2. Çimento ve Beton Dünyası, 15(89): 77-91.
- [4]. Sukmak P, Horpibulsuk S, Shen S-L, Chindaprasirt P, Suksiripattanapong C, (2013). Factors influencing strength development in clay–fly ash geopolymer. Construction and Building Materials, 47: 1125–1136.
- [5]. Provis J L, Deventer J S J, (2009). Geopolymers: Structures, processing, properties and industrial applications. Woodhead Publishing, Abingdon, UK.
- [6]. Şahin M, Mahyar M, Erdoğan S T, (2015). Afşin Elbistan Uçucu Külü ve Yüksek Fırın Cürufu İçeren Çimentosuz Bağlayıcılar Hazırlanması, 9.Ulusal Beton Kongresi, Antalya, Türkiye.
- [7]. Rangan, B V, (2008). Fly ash-based geopolymer concrete. Research Report GC 4, Engineering Faculty, Curtin University of Technology, Perth, Australia
- [8]. Haqn E, Padmanabhan S K, Licciulli A, (2014). Synthesis and characteristic sof fly ash and bottom ash based geopolymers–A comparative study. Ceramics International, 40: 2965–2971.
- [9]. Ramani P V, Chinnaraj P K, (2015). Geopolymer concrete with ground granulated blast furnace slag and black rice husk ash. Gradevinar, 67 (8): 741-748.
- [10]. Akcaozoğlu S, Ulu C, (2014). Recycling of waste PET granules as aggregate in alkaliactivated blast furnace slag/metakaolin blends. Construction and Building Materials, 58: 31–37.
- [11]. Bakharev T, (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35: 1233– 1246.
- [12]. Rattanasa U, Chindaprasirt P, (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22 (12): 1073-1078.
- [13]. Chindaprasirt P, Jaturapitakkul C, Chaleec W, Rattanasak U, (2009). Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management, 29 (2): 539-543.
- [14]. Temuujin, J., Williams, R.P., Riessen, A., (2009), “Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature”, Journal of Materials Processing Technology, 209 (12): 5276-5280.
- [15]. Topçu İ.B, Kurama H, Karakurt, C, (2007). Utilization of bottom ash in aerated concrete production. Cement and Concrete World, 12(68): 56-65.
- [16]. Anonim (2019). https://www.enerji.gov.tr/tr-tr/sayfalar/elektrik, (Erişim 01.03.2019)
- [17]. Erdoğan T Y, (1997). Admixtures for Concrete, METU Press, Ankara, Türkiye.
- [18]. Erdoğan B, Katnaş F, Türker P, Yeğinobali A, (2003). Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri. Türkiye Çimento Müstahsilleri Birliği, Ankara.
- [19]. Tekin İ, (2016). Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127: 607–617.