Derleme
BibTex RIS Kaynak Göster

Dağılım fonksiyonlarının yinelenmis fonksiyon sistemleri ile tahmini

Yıl 2014, Cilt: 7 Sayı: 1, 14 - 19, 25.05.2014

Öz

Bir dağılım fonksiyonunun parametrik olmayan tahmin edicisi yinelenmis fonksiyon sistemleri kullanılarak
elde edilebilmektedir. Bu yönteme göre, bir dağılım fonksiyonunun tahmin edicisi, (X1, X2,…,Xn)
örneklemine bağlı olan bir p parametre vektörü ve w afin dönüsümleri ailesine göre tanımlanan T daralma
operatörünün bir sabit noktası olarak düsünülmektedir. Döviz kuru verisi üzerinde yapılan uygulamadan elde
edilen sonuçlar bir örnek olarak gösterilmistir.

Kaynakça

  • Maldrbrot, B. (1982) The Fractal Geometry of Nature, W.H. Freeman and Co., San Francisco.
  • Barnsley, M. F. (1993), Fraktals Everywhere, Academic Press.
  • Barnsley, M. F. and Demko, S. (1985), Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London, Ser A, 399, 243-275.
  • Devaney, R, L.(1993), A First Course in Chaotic Dynamical Systems, Persaus Books Pub.
  • Forte, B. and Vrscay, E.R. (1994), Solving the inverse problem for function/image approximation using iterated function systems, I. Theoretical basis, Fractal, 2, 3, 325-334.
  • S.M. Iacus and D. La Torre., “Approximating distribution functions by iteration functions systems and applications”, Proceedings the S.I.M.A.I. Confarence, Chia Laguna, Italy, 2002.
  • S.M. Iacus and D. La Torre (2002), Fractals and Statistics: an R package 'Distributed Statistical Computing' (DSC 2003). D. La Torre (2002), On fractals distribution function estimation and applications,partemental Working Papers 2002-07, Dep. of Economics, University
  • S.M. Iacus and D. La Torre (2002), On fractals distribution function estimation and applications, Departemental Working Papers 2002-07, Dep. of Economics, University of Milan, Italy.
  • S.M. Iacus and D. La Torre (2002), Nonparametric estimation of distribution and density function in presence missing data: an IFS approach, Departemental Working Papers 2002-25, Dep. of Economics, University of Milan, Italy.
  • S.M. Iacus and D. La Torre (2005), Approximating distribution functions by iterated function systems, J.Appl.Math. Dec.Sci., 1, 334-345.
  • S.M. Iacus and D. La Torre (2005), A comparative simulation study on the IFS distribution function estimator, Nonlinear Analysis: Real World Applications, 6, 774-785.

Estimating the distribution functions by iterated function system

Yıl 2014, Cilt: 7 Sayı: 1, 14 - 19, 25.05.2014

Öz

A class of nonparametric estimators of a distribution function base on the theory of iterated function systems

(IFS). The estimator is considered as the fixed point of a contractive operator T defined in terms of a vector of

parameters p and a family of affine maps which can be both depend on the sample (X1, X2,…,Xn). An

application to exchange data is showed as an example.

Kaynakça

  • Maldrbrot, B. (1982) The Fractal Geometry of Nature, W.H. Freeman and Co., San Francisco.
  • Barnsley, M. F. (1993), Fraktals Everywhere, Academic Press.
  • Barnsley, M. F. and Demko, S. (1985), Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London, Ser A, 399, 243-275.
  • Devaney, R, L.(1993), A First Course in Chaotic Dynamical Systems, Persaus Books Pub.
  • Forte, B. and Vrscay, E.R. (1994), Solving the inverse problem for function/image approximation using iterated function systems, I. Theoretical basis, Fractal, 2, 3, 325-334.
  • S.M. Iacus and D. La Torre., “Approximating distribution functions by iteration functions systems and applications”, Proceedings the S.I.M.A.I. Confarence, Chia Laguna, Italy, 2002.
  • S.M. Iacus and D. La Torre (2002), Fractals and Statistics: an R package 'Distributed Statistical Computing' (DSC 2003). D. La Torre (2002), On fractals distribution function estimation and applications,partemental Working Papers 2002-07, Dep. of Economics, University
  • S.M. Iacus and D. La Torre (2002), On fractals distribution function estimation and applications, Departemental Working Papers 2002-07, Dep. of Economics, University of Milan, Italy.
  • S.M. Iacus and D. La Torre (2002), Nonparametric estimation of distribution and density function in presence missing data: an IFS approach, Departemental Working Papers 2002-25, Dep. of Economics, University of Milan, Italy.
  • S.M. Iacus and D. La Torre (2005), Approximating distribution functions by iterated function systems, J.Appl.Math. Dec.Sci., 1, 334-345.
  • S.M. Iacus and D. La Torre (2005), A comparative simulation study on the IFS distribution function estimator, Nonlinear Analysis: Real World Applications, 6, 774-785.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Figen Çilingir Bu kişi benim

Yayımlanma Tarihi 25 Mayıs 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 7 Sayı: 1

Kaynak Göster

IEEE F. Çilingir, “Dağılım fonksiyonlarının yinelenmis fonksiyon sistemleri ile tahmini”, JSSA, c. 7, sy. 1, ss. 14–19, 2014.