Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye istatistiki bölge ve aile düzeyinde kümelenmiş sıralı sonuç verisinin Bayesçi modellemesi

Yıl 2021, Cilt: 14 Sayı: 2, 44 - 57, 29.12.2021

Öz

Bu çalışma, üç seviyeli sıralı sonuç verisinin, rastgele etkili terimler içeren polytomous lojistik regresyon ile analizi üzerinedir. Rastgele etkili terimlerin, regresyon katsayıları için marjinal yorumlar elde edilebilmesini mümkün kılan logit linki için Bridge dağılımını takip ettikleri varsayılmıştır. Veri Türkiye Gelir ve Yaşam Koşulları Çalışması’ndan elde edilmiştir. Sonuç değişkeni sıralı bir yapıya sahip olan algılanan sağlık düzeyidir (ASD). Bu verinin analizi ile, bağımsız değişenlerin alt grupları, bölge ve aile düzeyinde ASD hakkında çıkarımlar yapılması amaçlanmaktadır. Bayesçi paradigma takip edilerek parametre ve rastgele etkilerin bileşik sonsal dağılımından örnekler elde edilmiştir. Model seçimi için üç kriter kullanılmıştır: Watanebe bilgi kriteri, log yalancı marjinal olabilirlik, ve sapma bilgi kriteri. Üç kriter de, bölge ve aile düzeyindeki varyasyonların, algılanan sağlık düzeyinin modellenmesi için göz önünde bulundurulması gerektiğine işaret etmektedir. Modellerin, gözlenen veriye benzer verileri üretme yeterliliğini anlamak için sonsal kestirim kontrolleri yapılmıştır. Ekonomik ve demografik değişkenlerin seviyeleri, Türkiye’nin bölgeleri ve çalışmaya dahil edilen aileler arasında ASD açısından farklılıklar bulunmuştur. Örneğin, işsiz insanlar çalışan insanlara kıyasla %19 daha yüksek ihtimalle kötü sağlık durumu raporlarken, kırsal Ege kötü sağlık durumu raporlama konusunda en düşük olasılığa sahip bölgedir.

Kaynakça

  • [1] Ö. Asar, 2021, Bayesian analysis of Turkish Income and Living Conditions data, using clustered longitudinal ordinal modelling with Bridge distributed random-effect, Statistical Modelling, 21(5), 405-427.
  • [2] L. Boehm, B. J. Reich, Bandyopadhyay, 2013, Bridging conditional and marginal inference for spatially referenced binary data, Biometrics, 69, 545-554.
  • [3] Z. Wang, T. A. Louis, 2003, Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function, Biometrika, 90(4), 765-775.
  • [4] R. Neal, 2011, MCMC using Hamiltonian dynamics, Handbook of Markov Chain Monte Carlo, Brooks, S., Gelman, A., Jones, G. L., Meng, X. L. (eds.), Chapman & Hall/CRC Press, Boca Raton. s. 113-162.
  • [5] V. S. Arora, M. Karaniokolos, A. Clair, A. Reeves, D. Stuckler, M. McKee, 2015, Data resource profile: the European Union Statistics on Income and Living Conditions (EU-SILC), International Journal of Epidemiology, 44(2), 451-461.
  • [6] B. Burstörm, P. Fredlund, 2001, Self-rated health: is it as good a predictor of subsequent mortality among adults in lower as well as in higher social classes?, Journal of Epidemiology and Community Health, 55, 836-840.
  • [7] D. S. Abebe, A. G. Toge, E. Dahl, 2016, Individual-level changes in self-rated health before and during the economic crisis in Europe, International Journal for Equity in Health, 15(1), 1-8.
  • [8] M. S. Yardım, S. Üner, 2018, Equity in access to care in the era of health system reforms in Turkey, Health Policy, 122(6), 645-651.
  • [9] A. Gelman, A. Jakulin, M. G. Pittau, Y.-S. Su, 2008, A weakly informative default prior distribution for logistic and other regression models, The Annals of Applied Statistics, 2(4), 1360-1383.
  • [10] A. Gelman, 2006, Prior distributions for variance parameters in hierarchical models, Bayesian Analysis, 1(3), 515-534.
  • [11] N. G. Polson, J. G. Scott, 2012, On the half-cauchy prior for a global scale parameter, Bayesian Analysis, 7(4), 887-902.
  • [12] M. D. Hoffman, A. Gelman, 2014, The No-U-Turn sample: adaptively setting path lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research, 15, 1593-1623.
  • [13] R Core Team, 2021, R: a language for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.
  • [14] S. Watanebe, 2010, Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory, Journal of Machine Learning Research, 11, 3571-3594.
  • [15] D. K. Dey, M. H. Chen, H. Chang, 1997, Bayesian approach for nonlinear random effects models, Biometrics, 53, 1239-1252.
  • [16] A. Gelman, J. Hwang, A. Vehtari, 2014, Understanding predictive information criteria for Bayesian models, Statistics and Computing, 24, 997-1016.
  • [17] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, A. van der Linde, 2002, Bayesian measures of model complexity and fit (with discussion), Journal of the Royal Statistical Society, Series B, 64(4), 583-639.
  • [18] S. P. Brooks, A. Gelman, 1997, General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, 7, 434-455.
Yıl 2021, Cilt: 14 Sayı: 2, 44 - 57, 29.12.2021

Öz

Kaynakça

  • [1] Ö. Asar, 2021, Bayesian analysis of Turkish Income and Living Conditions data, using clustered longitudinal ordinal modelling with Bridge distributed random-effect, Statistical Modelling, 21(5), 405-427.
  • [2] L. Boehm, B. J. Reich, Bandyopadhyay, 2013, Bridging conditional and marginal inference for spatially referenced binary data, Biometrics, 69, 545-554.
  • [3] Z. Wang, T. A. Louis, 2003, Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function, Biometrika, 90(4), 765-775.
  • [4] R. Neal, 2011, MCMC using Hamiltonian dynamics, Handbook of Markov Chain Monte Carlo, Brooks, S., Gelman, A., Jones, G. L., Meng, X. L. (eds.), Chapman & Hall/CRC Press, Boca Raton. s. 113-162.
  • [5] V. S. Arora, M. Karaniokolos, A. Clair, A. Reeves, D. Stuckler, M. McKee, 2015, Data resource profile: the European Union Statistics on Income and Living Conditions (EU-SILC), International Journal of Epidemiology, 44(2), 451-461.
  • [6] B. Burstörm, P. Fredlund, 2001, Self-rated health: is it as good a predictor of subsequent mortality among adults in lower as well as in higher social classes?, Journal of Epidemiology and Community Health, 55, 836-840.
  • [7] D. S. Abebe, A. G. Toge, E. Dahl, 2016, Individual-level changes in self-rated health before and during the economic crisis in Europe, International Journal for Equity in Health, 15(1), 1-8.
  • [8] M. S. Yardım, S. Üner, 2018, Equity in access to care in the era of health system reforms in Turkey, Health Policy, 122(6), 645-651.
  • [9] A. Gelman, A. Jakulin, M. G. Pittau, Y.-S. Su, 2008, A weakly informative default prior distribution for logistic and other regression models, The Annals of Applied Statistics, 2(4), 1360-1383.
  • [10] A. Gelman, 2006, Prior distributions for variance parameters in hierarchical models, Bayesian Analysis, 1(3), 515-534.
  • [11] N. G. Polson, J. G. Scott, 2012, On the half-cauchy prior for a global scale parameter, Bayesian Analysis, 7(4), 887-902.
  • [12] M. D. Hoffman, A. Gelman, 2014, The No-U-Turn sample: adaptively setting path lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research, 15, 1593-1623.
  • [13] R Core Team, 2021, R: a language for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.
  • [14] S. Watanebe, 2010, Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory, Journal of Machine Learning Research, 11, 3571-3594.
  • [15] D. K. Dey, M. H. Chen, H. Chang, 1997, Bayesian approach for nonlinear random effects models, Biometrics, 53, 1239-1252.
  • [16] A. Gelman, J. Hwang, A. Vehtari, 2014, Understanding predictive information criteria for Bayesian models, Statistics and Computing, 24, 997-1016.
  • [17] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, A. van der Linde, 2002, Bayesian measures of model complexity and fit (with discussion), Journal of the Royal Statistical Society, Series B, 64(4), 583-639.
  • [18] S. P. Brooks, A. Gelman, 1997, General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, 7, 434-455.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özgür Asar 0000-0003-0603-1409

Erken Görünüm Tarihi 29 Aralık 2021
Yayımlanma Tarihi 29 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 14 Sayı: 2

Kaynak Göster

IEEE Ö. Asar, “Türkiye istatistiki bölge ve aile düzeyinde kümelenmiş sıralı sonuç verisinin Bayesçi modellemesi”, JSSA, c. 14, sy. 2, ss. 44–57, 2021.