Kalman Filtresi Kullanılarak Sistem Gürültüsünün Kaynağının Tespiti
Yıl 2020,
Cilt: 1 Sayı: 2, 19 - 24, 21.12.2020
Yalçın Bulut
,
Barış Ünal
Öz
Kontrolör ve gözlemci tasarımında ihtiyaç duyulan sistem gürültüsünü kaynaklarının dağılımı sistemin kompleks olması nedeniyle nadiren bilinmektedir. Bu çalışmada Kalman Filtresi teorisine dayanan filtre kalıntısı korelasyon yöntemi kullanılarak proses gürültülerinin kaynağı ölçüm verisi ile hesaplanmıştır. Bu yöntemde rastgele bir filtre kazancı ile elde edilen filtre kalıntıları kovaryans matrisleri hesaplanır. Bu makale filtre kalıntıları korelasyonları yaklaşımını irdeler ve sistem gürültülerinin kaynaklarının hesaplanmasındaki performansını değerlendirir. Sayısal sonuçlar, bu yöntemin proses gürültüsünün kaynağının tespiti ve gürültü kovaryans matrislerinin tahmini için etkili bir şekilde kullanılabileceğini göstermektedir.
Kaynakça
- [1] Kalman R. E. “A new approach to linear filtering and prediction problems.” ASME Journal of Basic Engineering, 82:35-45, 1960.
- [2] Mehra, R. K. “On the identification of variance and adaptive Kalman filtering.” IEEE Transactions on Automatic Control, 15:175-184, 1970.
- [3] Carew B. and Belanger P. R . “Identification of Optimum Filter Steady-State Gain for Systems with Unknown Noise Covariances.” IEEE Transactions on Automatic Control, 18:582-587, 1974.
- [4] Neethling C. and Young P. “Comments on identification of optimum filter steady-state gain for systems with unknown noise covariances.” IEEE Transactions on Automatic Control, 19:623-625, 1974.
- [5] Odelson B. J. and Rajamani M. R. and Rawlings J. B. “A new autocovariance least-squares method for estimating noise covariances.” Automatica, 42(2):303-308, February 2006.
- [6] Akesson B. M. and Jùrgensen J. B. and Poulsen N. K. and Jùrgensen S. B . “A generalized autoco-variance least-squares method for Kalman filter tuning.” Journal of Process Control, 42(2), June 2007.
- [7] Bulut Y. and Vines-Cavanaugh D. and Bernal D. “Process and Measurement Noise Estimation for Kalman Filtering.” IMAC XXVIII, A Conference and Exposition on Structural Dynamics, February, 2010.
Process Noise Source Localization Using Kalman Filter
Yıl 2020,
Cilt: 1 Sayı: 2, 19 - 24, 21.12.2020
Yalçın Bulut
,
Barış Ünal
Öz
Due to complexity in the systems, spatial distribution of unmeasured process noise that is required for the controller and observer design are often unknown. In this study an innovations correlations approach developed in Kalman Filter theory is used to localize the process noise from output measurements. The approach calculates covariance matrices from analysis of resulting innovations from an arbitrary filter gain. Aim of this paper is to review the innovation correlations approach and to evaluate its performance for localization of the process noise. Numerical results suggest that the method can be effectively used for source localization of process noise as well as estimation of noise covariance matrices.
Kaynakça
- [1] Kalman R. E. “A new approach to linear filtering and prediction problems.” ASME Journal of Basic Engineering, 82:35-45, 1960.
- [2] Mehra, R. K. “On the identification of variance and adaptive Kalman filtering.” IEEE Transactions on Automatic Control, 15:175-184, 1970.
- [3] Carew B. and Belanger P. R . “Identification of Optimum Filter Steady-State Gain for Systems with Unknown Noise Covariances.” IEEE Transactions on Automatic Control, 18:582-587, 1974.
- [4] Neethling C. and Young P. “Comments on identification of optimum filter steady-state gain for systems with unknown noise covariances.” IEEE Transactions on Automatic Control, 19:623-625, 1974.
- [5] Odelson B. J. and Rajamani M. R. and Rawlings J. B. “A new autocovariance least-squares method for estimating noise covariances.” Automatica, 42(2):303-308, February 2006.
- [6] Akesson B. M. and Jùrgensen J. B. and Poulsen N. K. and Jùrgensen S. B . “A generalized autoco-variance least-squares method for Kalman filter tuning.” Journal of Process Control, 42(2), June 2007.
- [7] Bulut Y. and Vines-Cavanaugh D. and Bernal D. “Process and Measurement Noise Estimation for Kalman Filtering.” IMAC XXVIII, A Conference and Exposition on Structural Dynamics, February, 2010.