Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 241 - 268, 18.07.2024
https://doi.org/10.56554/jtom.1406562

Öz

Kaynakça

  • Ahmad, S., Nadeem, A., Akhanova, G., Houghton, T., & Muhammad-Sukki, F. (2017). Multi-criteria evaluation of renewable and nuclear resources for electricity generation in Kazakhstan. Energy, 141, 1880– 1891. https://doi.org/10.1016/j.energy.2017.11.102
  • Alkema, B., R. G. (2022). Aviation’s net-zero ambitions meet resistance in the run-up to COP26 -le. https://runwaygirlnetwork.com/2021/10/aviations-net-zero-ambitions-meet-resistance-cop26/
  • Atag.org. (2022). Air Transport Action Group. (2020, September). Facts and figures. www.atag.org/factsfigures. HTML
  • Atsonios, K., Kougioumtzis, M.-A., D. Panopoulos, K., & Kakaras, E. (2015). Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison. Applied Energy, 138, 346–366. https://doi.org/10.1016/j.apenergy.2014.10.056
  • aviationbenefits.org. (2022). Air Transport Action Group. (2021). Waypoint 2050.tle. https://aviationbenefits.org/environmental-efficiency/climate-action/waypoint-2050/ Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics, 195, 106–117. https://doi.org/10.1016/j.ijpe.2017.10.013
  • Bann, S. J., Malina, R., Staples, M. D., Suresh, P., Pearlson, M., Tyner, W. E., Hileman, J. I., & Barrett, S. (2017). The costs of production of alternative jet fuel: A harmonized stochastic assessment. Bioresource Technology, 227, 179–187. https://doi.org/10.1016/j.biortech.2016.12.032
  • Baudry, G., Macharis, C., & Vallée, T. (2018). Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-based Multi-Actor Multi-Criteria Analysis. Energy, 155, 1032–1046. https://doi.org/10.1016/j.energy.2018.05.038
  • Brans, J. P., & Vincke, P. (1985). Note—A Preference Ranking Organisation Method. Management Science, 31(6), 647–656. https://doi.org/10.1287/mnsc.31.6.647 CAAFI. (n.d.). Fuel Qualification. (2022b). Retrieved December 13, 2022, from https://www.caafi.org/focus_areas/feedstocks.html CAAFI. (2019). Etihad Airways Flies from Abu Dhabi to Amsterdam on AJF Blend from Halophytes. https://caafi.org/news/NewsItem.aspx?id=10442 C astello, D., Haider, M. S., & Rosendahl, L. A. (2019). Catalytic upgrading of hydrothermal liquefaction İbrahim, Kuşakcı, Abdullah JTOM(8)1, 241-268, 2024 262 biocrudes: Different challenges for different feedstocks. Renewable Energy, 141, 420–430. https://doi.org/10.1016/j.renene.2019.04.003
  • Chen, Y.-K., Lin, C.-H., & Wang, W.-C. (2020). The conversion of biomass into renewable jet fuel. Energy, 201, 117655. https://doi.org/10.1016/j.energy.2020.117655
  • Cheng, F., & Brewer, C. E. (2017). Producing jet fuel from biomass lignin: Potential pathways to alkylbenzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 72, 673–722. https://doi.org/10.1016/j.rser.2017.01.030
  • Chevron Products Company. (2004). Aviation Fuels Technical Review. https://www.chevron.com/- /media/chevron/operations/documents/aviation-tech-review.pdf
  • Chiaramonti, D. (2019). Sustainable Aviation Fuels: the challenge of decarbonization. Energy Procedia, 158, 1202–1207. https://doi.org/10.1016/j.egypro.2019.01.308
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  • Dayton, D. C., & Foust, T. D. (2020). Alternative Jet Fuels. In Analytical Methods for Biomass Characterization and Conversion (pp. 147–165). Elsevier. https://doi.org/10.1016/B978-0-12-815605- 6.00010-X
  • de Jong, S., Hoefnagels, R., Faaij, A., Slade, R., Mawhood, R., & Junginger, M. (2015). The feasibility of short‐term production strategies for renewable jet fuels – a comprehensive techno‐economic comparison. Biofuels, Bioproducts and Biorefining, 9(6), 778–800. https://doi.org/10.1002/bbb.1613
  • Diederichs, G. W., Ali Mandegari, M., Farzad, S., & Görgens, J. F. (2016). Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresource Technology, 216, 331–339. https://doi.org/10.1016/j.biortech.2016.05.090
  • Dožić, S. (2019). Multi-criteria decision making methods: Application in the aviation industry. Journal of Air Transport Management, 79, 101683. https://doi.org/10.1016/j.jairtraman.2019.101683
  • Dyk, S. van. E. C. R. (2021). ReFuelEU Aviation proposal details SAF blending obligation on fuel suppliers. https://www.greenairnews.com/?p=1374
  • Efroymson, R. A., Dale, V. H., & Langholtz, M. H. (2017). Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems. GCB Bioenergy, 9(6), 1005–1023. https://doi.org/10.1111/gcbb.12359
  • Fiorese, G., Catenacci, M., Verdolini, E., & Bosetti, V. (2013). Advanced biofuels: Future perspectives from an expert elicitation survey. Energy Policy, 56, 293–311. https://doi.org/10.1016/j.enpol.2012.12.061
  • Fortier, M.-O. P., Roberts, G. W., Stagg-Williams, S. M., & Sturm, B. S. M. (2014). Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, 122, 73–82. https://doi.org/10.1016/j.apenergy.2014.01.077
  • Ganguly, I., Pierobon, F., Bowers, T. C., Huisenga, M., Johnston, G., & Eastin, I. L. (2018). ‘Woods-to-Wake’ Life Cycle Assessment of residual woody biomass based jet-fuel using mild bisulfite pretreatment. Biomass and Bioenergy, 108, 207–216. https://doi.org/10.1016/j.biombioe.2017.10.041
  • Gegg, P., & Wells, V. (2017). UK Macro-Algae Biofuels: A Strategic Management Review and Future Research Agenda. Journal of Marine Science and Engineering, 5(3), 32. https://doi.org/10.3390/jmse5030032
  • Geleynse, S., Jiang, Z., Brandt, K., Garcia-Perez, M., Wolcott, M., & Zhang, X. (2020). Pulp mill integration with alcohol-to-jet conversion technology. Fuel Processing Technology, 201, 106338. https://doi.org/10.1016/j.fuproc.2020.106338
  • Heyne, J., Rauch, B., Le Clercq, P., & Colket, M. (2021). Sustainable aviation fuel prescreening tools and procedures. Fuel, 290, 120004. https://doi.org/10.1016/j.fuel.2020.120004
  • Hileman, J. I., & Stratton, R. W. (2014). Alternative jet fuel feasibility. Transport Policy, 34, 52–62. https://doi.org/10.1016/j.tranpol.2014.02.018
  • IATA. (2019). Sustainable Aviation Fuels Fact sheet. https://www.iata.org/contentassets/ed476ad1a80f4ec7949204e0d9e34a7f/fact-sheet-alternative-fuels.pdf.
  • ICAO. (2016). Environmental Report. www.icao.int/environmental-protection/Pages/env2016.aspx.
  • ICAO. (2022). Sustainable Aviation Fuels (SAF). www.icao.int/environmental-protection/pages/SAF.aspx
  • EA. (2022). Aviation – Analysis. https://www.iea.org/reports/aviation
  • International Civil Aviation Organization. (2019). Trends in Emissions that Affect Climate Change. https://www.icao.int/environmental-protection/Pages/ClimateChange_Trends.aspx
  • International Civil Aviation Organization. (2022). COVID-19 impacts and 2022 CORSIA periodic review. https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-and-Covid-19.aspx
  • International Civil Aviation Organization. (2021). https://bit.ly/3ruI5p8
  • Kivits, R., Charles, M. B., & Ryan, N. (2010). A post-carbon aviation future: Airports and the transition to a cleaner aviation sector. Futures, 42(3), 199–211. https://doi.org/10.1016/j.futures.2009.11.005
  • Klein, B. C., Chagas, M. F., Junqueira, T. L., Rezende, M. C. A. F., Cardoso, T. de F., Cavalett, O., & Bonomi, A. (2018). Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305. https://doi.org/10.1016/j.apenergy.2017.10.079
  • Kolosz, B. W., Luo, Y., Xu, B., Maroto-Valer, M. M., & Andresen, J. M. (2020). Life cycle environmental analysis of ‘drop in’ alternative aviation fuels: a review. Sustainable Energy & Fuels, 4(7), 3229–3263. https://doi.org/10.1039/C9SE00788A
  • Lanzini, P., Testa, F., & Iraldo, F. (2016). Factors affecting drivers’ willingness to pay for biofuels: the case of Italy. Journal of Cleaner Production, 112, 2684–2692. https://doi.org/10.1016/j.jclepro.2015.10.080
  • Li, X., Mupondwa, E., & Tabil, L. (2018). Technoeconomic analysis of biojet fuel production from camelina at commercial scale: Case of Canadian Prairies. Bioresource Technology, 249, 196–205. https://doi.org/10.1016/j.biortech.2017.09.183
  • Lokesh, K., Sethi, V., Nikolaidis, T., Goodger, E., & Nalianda, D. (2015). Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact on jet engine performance. Biomass and Bioenergy, 77, 26–44. https://doi.org/10.1016/j.biombioe.2015.03.005
  • Michailos, S. (2018). Process design, economic evaluation and life cycle assessment of jet fuel production from sugar cane residue. Environmental Progress & Sustainable Energy, 37(3), 1227–1235. https://doi.org/10.1002/ep.12840
  • Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., & Aminul Islam, A. K. M. (2017). Jatropha Biofuel Industry: The Challenges. In Frontiers in Bioenergy and Biofuels. InTech. https://doi.org/10.5772/64979
  • Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D’Ascoli, E., Kim, J., Lichtenstern, M., Scheibe, M., Beaton, B., Beyersdorf, A. J., Barrick, J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick,
  • D., Shook, M., Slover, G., … Anderson, B. E. (2017). Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature, 543(7645), 411–415. https://doi.org/10.1038/nature21420
  • Neuling, U., & Kaltschmitt, M. (2018). Techno-economic and environmental analysis of aviation biofuels. Fuel Processing Technology, 171, 54–69. https://doi.org/10.1016/j.fuproc.2017.09.022
  • O’Connell, A., Kousoulidou, M., Lonza, L., & Weindorf, W. (2019). Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renewable and Sustainable Energy Reviews, 101, 504–515. https://doi.org/10.1016/j.rser.2018.11.033
  • O’Malley, J., Pavlenko, N., and Searle, S. (2021). Estimating sustainable aviation fuel feedstock availability to meet growing European Union demand.https://theicct.org/sites/default/files/publications/Sustainableaviation- fuel-feedstock-eu-mar2021.pdf
  • Palmer, W. (2021). United Flies World’s First Passenger Flight On 100% Sustainable Aviation Fuel Supplying One of Its Engines. https://www.ge.com/news/reports/united-flies-worlds-first-passenger-flight-on-100- sustainable-aviation-fuel-supplying-one
  • Reuters. (2021). current targets on sustainable aviation fuel “pathetic.” https://www.reuters.com/business/aerospace-defense/uks-johnson-says-current-targets-sustainable-aviationİbrahim,
  • fuel-pathetic-2021-11-02/
  • Ribeiro, L. A., Pereira da Silva, P., Ribeiro, L., & Dotti, F. L. (2017). Modelling the impacts of policies on advanced biofuel feedstocks diffusion. Journal of Cleaner Production, 142, 2471–2479. https://doi.org/10.1016/j.jclepro.2016.11.027
  • Ricardo Energy and Environment. (2020). Targeted Aviation Advanced Biofuels Demonstration Competition – Feasibility Study Final Report for Department for Transport, UK. https://docslib.org/doc/10188308/targetedaviation- advanced-biofuels-demonstration-competition-feasibility-study-final-report-report-for-departmentfor- transport-uk
  • Ritchie, H. (2020). Climate change and flying: what share of global CO2 emissions come from aviation? https://ourworldindata.org/co2-emissions-from-aviation Schäfer, A. W., Barrett, S. R. H., Doyme, K., Dray, L. M., Gnadt, A. R., Self, R., O’Sullivan, A., Synodinos,
  • A. P., & Torija, A. J. (2018). Technological, economic and environmental prospects of all-electric aircraft. Nature Energy, 4(2), 160–166. https://doi.org/10.1038/s41560-018-0294-x
  • Scheelhaase, J., Maertens, S., & Grimme, W. (2019). Synthetic fuels in aviation – Current barriers and potential political measures. Transportation Research Procedia, 43, 21–30. https://doi.org/10.1016/j.trpro.2019.12.015
  • Schillo, R. S., Isabelle, D. A., & Shakiba, A. (2017). Linking advanced biofuels policies with stakeholder interests: A method building on Quality Function Deployment. Energy Policy, 100, 126–137. https://doi.org/10.1016/j.enpol.2016.09.056
  • Seber, G., Malina, R., Pearlson, M. N., Olcay, H., Hileman, J. I., & Barrett, S. R. H. (2014). Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass and Bioenergy, 67, 108–118. https://doi.org/10.1016/j.biombioe.2014.04.024
  • Shahabuddin, M., Alam, M. T., Krishna, B. B., Bhaskar, T., & Perkins, G. (2020). A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresource Technology, 312, 123596. https://doi.org/10.1016/j.biortech.2020.123596 Shahmardan, A., & Hendijani Zadeh, M. (2013). An integrated approach for solving a MCDM problem, combination of entropy fuzzy and F-PROMETHEE techniques. Journal of Industrial Engineering and Management, 6(4), 1124–1138. https://doi.org/10.3926/jiem.899
  • Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248. https://doi.org/10.1016/j.pecs.2017.04.001
  • SkyNRG. (2020). Technology | Sustainable Aviation Fuel. https://skynrg.com/sustainable-aviationfuel/ technology/ Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., & Barrett, S. R. H. (2018). Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy, 114, 342–354. https://doi.org/10.1016/j.enpol.2017.12.007
  • The Royal Society. (2019). Sustainable synthetic carbon based fuels for transport. https://royalsociety.org/- /media/policy/projects/synthetic-fuels/synthetic-fuels-briefing.pdf Timperley, J. (2021). The Fastest Ways Aviation Could Cut Emissions. https://www.bbc.com/future/article/20210525-how-aviation-is-reducing-its-climate-emissions
  • Trejo-Pech, C. O., Larson, J. A., English, B. C., & Yu, T. E. (2019). Cost and Profitability Analysis of a Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA. Energies, 12(16), 3055. https://doi.org/10.3390/en12163055
  • Trivedi, P., Olcay, H., Staples, M. D., Withers, M. R., Malina, R., & Barrett, S. R. H. (2015). Energy return on investment for alternative jet fuels. Applied Energy, 141, 167–174. https://doi.org/10.1016/j.apenergy.2014.12.016 United Nations. (2015). The Paris Agreement. https://www.un.org/en/climatechange/paris-agreement
  • US Dept. Of energy. (2020). Sustainable Aviation Fuel Review of Technical Pathways. https://www.energy.gov/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf İbrahim, Kuşakcı, Abdullah JTOM(8)1, 241-268, 2024 265
  • Wang, Z., Pashaei Kamali, F., Osseweijer, P., & Posada, J. A. (2019). Socioeconomic effects of aviation biofuel production in Brazil: A scenarios-based Input-Output analysis. Journal of Cleaner Production, 230, 1036– 1050. https://doi.org/10.1016/j.jclepro.2019.05.145
  • World Economic Forum. (2020). Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net- Zero Aviation. https://www.weforum.org/reports/clean-skies-for-tomorrow-sustainable-aviation-fuels-as-apathway- to-net-zero-aviation
  • Zemanek, D., Champagne, P., & Mabee, W. (2020). Review of life‐cycle greenhouse‐gas emissions assessments of hydroprocessed renewable fuel from oilseeds. Biofuels, Bioproducts and Biorefining, 14(5), 935–949. https://doi.org/10.1002/bbb.2125
  • Zhang, H., Fang, Y., Wang, M., Appels, L., & Deng, Y. (2020). Prospects and perspectives foster enhanced research on bio-aviation fuels. Journal of Environmental Management, 274, 111214. https://doi.org/10.1016/j.jenvman.2020.111214
  • Zhang, H., Wang, L., Van herle, J., Maréchal, F., & Desideri, U. (2020). Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer. Applied Energy, 270, 115113. https://doi.org/10.1016/j.apenergy.2020.115113

Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach

Yıl 2024, , 241 - 268, 18.07.2024
https://doi.org/10.56554/jtom.1406562

Öz

Sustainable aviation fuels (SAF) present a feasible solution to decarbonize modern aviation. Unlike traditional jet fuels, SAFs are produced in a variety of ways, thereby choosing one of these processes as a complicated Multi-Criteria Decision challenge that involves conflicting priorities. This study evaluates SAF production processes using a multicriteria methodology, PROMETHEE-2. With SAF technology in its nascent stage and limited data, several stakeholders in the aviation sector were enlisted to assist in the collection of data and preferences. The suggested framework’s strength lies in its adaptability to suit the subjective opinions of diverse stakeholders, selection of ranking system, and robustness of outcomes. This research engaged stakeholders in a participative manner to rank 11 (A1 to A11) SAF production paths based on 24 parameters categorized into social, environmental, economic, and technological evaluation criteria. Industry professionals were given a form to rate SAF production methods according to a performance criterion. Data is validated using fuzzy TOPSIS and fuzzy VIKOR and PROMETHEE-II to reduce professionals’ judgmental personal prejudice. Results indicate the optimal feedstock for SAF production is the direct transition process of CO2 to SAF (A11) in the gasification or Fischer-T synthesis group.

Kaynakça

  • Ahmad, S., Nadeem, A., Akhanova, G., Houghton, T., & Muhammad-Sukki, F. (2017). Multi-criteria evaluation of renewable and nuclear resources for electricity generation in Kazakhstan. Energy, 141, 1880– 1891. https://doi.org/10.1016/j.energy.2017.11.102
  • Alkema, B., R. G. (2022). Aviation’s net-zero ambitions meet resistance in the run-up to COP26 -le. https://runwaygirlnetwork.com/2021/10/aviations-net-zero-ambitions-meet-resistance-cop26/
  • Atag.org. (2022). Air Transport Action Group. (2020, September). Facts and figures. www.atag.org/factsfigures. HTML
  • Atsonios, K., Kougioumtzis, M.-A., D. Panopoulos, K., & Kakaras, E. (2015). Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison. Applied Energy, 138, 346–366. https://doi.org/10.1016/j.apenergy.2014.10.056
  • aviationbenefits.org. (2022). Air Transport Action Group. (2021). Waypoint 2050.tle. https://aviationbenefits.org/environmental-efficiency/climate-action/waypoint-2050/ Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics, 195, 106–117. https://doi.org/10.1016/j.ijpe.2017.10.013
  • Bann, S. J., Malina, R., Staples, M. D., Suresh, P., Pearlson, M., Tyner, W. E., Hileman, J. I., & Barrett, S. (2017). The costs of production of alternative jet fuel: A harmonized stochastic assessment. Bioresource Technology, 227, 179–187. https://doi.org/10.1016/j.biortech.2016.12.032
  • Baudry, G., Macharis, C., & Vallée, T. (2018). Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-based Multi-Actor Multi-Criteria Analysis. Energy, 155, 1032–1046. https://doi.org/10.1016/j.energy.2018.05.038
  • Brans, J. P., & Vincke, P. (1985). Note—A Preference Ranking Organisation Method. Management Science, 31(6), 647–656. https://doi.org/10.1287/mnsc.31.6.647 CAAFI. (n.d.). Fuel Qualification. (2022b). Retrieved December 13, 2022, from https://www.caafi.org/focus_areas/feedstocks.html CAAFI. (2019). Etihad Airways Flies from Abu Dhabi to Amsterdam on AJF Blend from Halophytes. https://caafi.org/news/NewsItem.aspx?id=10442 C astello, D., Haider, M. S., & Rosendahl, L. A. (2019). Catalytic upgrading of hydrothermal liquefaction İbrahim, Kuşakcı, Abdullah JTOM(8)1, 241-268, 2024 262 biocrudes: Different challenges for different feedstocks. Renewable Energy, 141, 420–430. https://doi.org/10.1016/j.renene.2019.04.003
  • Chen, Y.-K., Lin, C.-H., & Wang, W.-C. (2020). The conversion of biomass into renewable jet fuel. Energy, 201, 117655. https://doi.org/10.1016/j.energy.2020.117655
  • Cheng, F., & Brewer, C. E. (2017). Producing jet fuel from biomass lignin: Potential pathways to alkylbenzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 72, 673–722. https://doi.org/10.1016/j.rser.2017.01.030
  • Chevron Products Company. (2004). Aviation Fuels Technical Review. https://www.chevron.com/- /media/chevron/operations/documents/aviation-tech-review.pdf
  • Chiaramonti, D. (2019). Sustainable Aviation Fuels: the challenge of decarbonization. Energy Procedia, 158, 1202–1207. https://doi.org/10.1016/j.egypro.2019.01.308
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  • Dayton, D. C., & Foust, T. D. (2020). Alternative Jet Fuels. In Analytical Methods for Biomass Characterization and Conversion (pp. 147–165). Elsevier. https://doi.org/10.1016/B978-0-12-815605- 6.00010-X
  • de Jong, S., Hoefnagels, R., Faaij, A., Slade, R., Mawhood, R., & Junginger, M. (2015). The feasibility of short‐term production strategies for renewable jet fuels – a comprehensive techno‐economic comparison. Biofuels, Bioproducts and Biorefining, 9(6), 778–800. https://doi.org/10.1002/bbb.1613
  • Diederichs, G. W., Ali Mandegari, M., Farzad, S., & Görgens, J. F. (2016). Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresource Technology, 216, 331–339. https://doi.org/10.1016/j.biortech.2016.05.090
  • Dožić, S. (2019). Multi-criteria decision making methods: Application in the aviation industry. Journal of Air Transport Management, 79, 101683. https://doi.org/10.1016/j.jairtraman.2019.101683
  • Dyk, S. van. E. C. R. (2021). ReFuelEU Aviation proposal details SAF blending obligation on fuel suppliers. https://www.greenairnews.com/?p=1374
  • Efroymson, R. A., Dale, V. H., & Langholtz, M. H. (2017). Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems. GCB Bioenergy, 9(6), 1005–1023. https://doi.org/10.1111/gcbb.12359
  • Fiorese, G., Catenacci, M., Verdolini, E., & Bosetti, V. (2013). Advanced biofuels: Future perspectives from an expert elicitation survey. Energy Policy, 56, 293–311. https://doi.org/10.1016/j.enpol.2012.12.061
  • Fortier, M.-O. P., Roberts, G. W., Stagg-Williams, S. M., & Sturm, B. S. M. (2014). Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, 122, 73–82. https://doi.org/10.1016/j.apenergy.2014.01.077
  • Ganguly, I., Pierobon, F., Bowers, T. C., Huisenga, M., Johnston, G., & Eastin, I. L. (2018). ‘Woods-to-Wake’ Life Cycle Assessment of residual woody biomass based jet-fuel using mild bisulfite pretreatment. Biomass and Bioenergy, 108, 207–216. https://doi.org/10.1016/j.biombioe.2017.10.041
  • Gegg, P., & Wells, V. (2017). UK Macro-Algae Biofuels: A Strategic Management Review and Future Research Agenda. Journal of Marine Science and Engineering, 5(3), 32. https://doi.org/10.3390/jmse5030032
  • Geleynse, S., Jiang, Z., Brandt, K., Garcia-Perez, M., Wolcott, M., & Zhang, X. (2020). Pulp mill integration with alcohol-to-jet conversion technology. Fuel Processing Technology, 201, 106338. https://doi.org/10.1016/j.fuproc.2020.106338
  • Heyne, J., Rauch, B., Le Clercq, P., & Colket, M. (2021). Sustainable aviation fuel prescreening tools and procedures. Fuel, 290, 120004. https://doi.org/10.1016/j.fuel.2020.120004
  • Hileman, J. I., & Stratton, R. W. (2014). Alternative jet fuel feasibility. Transport Policy, 34, 52–62. https://doi.org/10.1016/j.tranpol.2014.02.018
  • IATA. (2019). Sustainable Aviation Fuels Fact sheet. https://www.iata.org/contentassets/ed476ad1a80f4ec7949204e0d9e34a7f/fact-sheet-alternative-fuels.pdf.
  • ICAO. (2016). Environmental Report. www.icao.int/environmental-protection/Pages/env2016.aspx.
  • ICAO. (2022). Sustainable Aviation Fuels (SAF). www.icao.int/environmental-protection/pages/SAF.aspx
  • EA. (2022). Aviation – Analysis. https://www.iea.org/reports/aviation
  • International Civil Aviation Organization. (2019). Trends in Emissions that Affect Climate Change. https://www.icao.int/environmental-protection/Pages/ClimateChange_Trends.aspx
  • International Civil Aviation Organization. (2022). COVID-19 impacts and 2022 CORSIA periodic review. https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-and-Covid-19.aspx
  • International Civil Aviation Organization. (2021). https://bit.ly/3ruI5p8
  • Kivits, R., Charles, M. B., & Ryan, N. (2010). A post-carbon aviation future: Airports and the transition to a cleaner aviation sector. Futures, 42(3), 199–211. https://doi.org/10.1016/j.futures.2009.11.005
  • Klein, B. C., Chagas, M. F., Junqueira, T. L., Rezende, M. C. A. F., Cardoso, T. de F., Cavalett, O., & Bonomi, A. (2018). Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305. https://doi.org/10.1016/j.apenergy.2017.10.079
  • Kolosz, B. W., Luo, Y., Xu, B., Maroto-Valer, M. M., & Andresen, J. M. (2020). Life cycle environmental analysis of ‘drop in’ alternative aviation fuels: a review. Sustainable Energy & Fuels, 4(7), 3229–3263. https://doi.org/10.1039/C9SE00788A
  • Lanzini, P., Testa, F., & Iraldo, F. (2016). Factors affecting drivers’ willingness to pay for biofuels: the case of Italy. Journal of Cleaner Production, 112, 2684–2692. https://doi.org/10.1016/j.jclepro.2015.10.080
  • Li, X., Mupondwa, E., & Tabil, L. (2018). Technoeconomic analysis of biojet fuel production from camelina at commercial scale: Case of Canadian Prairies. Bioresource Technology, 249, 196–205. https://doi.org/10.1016/j.biortech.2017.09.183
  • Lokesh, K., Sethi, V., Nikolaidis, T., Goodger, E., & Nalianda, D. (2015). Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact on jet engine performance. Biomass and Bioenergy, 77, 26–44. https://doi.org/10.1016/j.biombioe.2015.03.005
  • Michailos, S. (2018). Process design, economic evaluation and life cycle assessment of jet fuel production from sugar cane residue. Environmental Progress & Sustainable Energy, 37(3), 1227–1235. https://doi.org/10.1002/ep.12840
  • Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., & Aminul Islam, A. K. M. (2017). Jatropha Biofuel Industry: The Challenges. In Frontiers in Bioenergy and Biofuels. InTech. https://doi.org/10.5772/64979
  • Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D’Ascoli, E., Kim, J., Lichtenstern, M., Scheibe, M., Beaton, B., Beyersdorf, A. J., Barrick, J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick,
  • D., Shook, M., Slover, G., … Anderson, B. E. (2017). Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature, 543(7645), 411–415. https://doi.org/10.1038/nature21420
  • Neuling, U., & Kaltschmitt, M. (2018). Techno-economic and environmental analysis of aviation biofuels. Fuel Processing Technology, 171, 54–69. https://doi.org/10.1016/j.fuproc.2017.09.022
  • O’Connell, A., Kousoulidou, M., Lonza, L., & Weindorf, W. (2019). Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renewable and Sustainable Energy Reviews, 101, 504–515. https://doi.org/10.1016/j.rser.2018.11.033
  • O’Malley, J., Pavlenko, N., and Searle, S. (2021). Estimating sustainable aviation fuel feedstock availability to meet growing European Union demand.https://theicct.org/sites/default/files/publications/Sustainableaviation- fuel-feedstock-eu-mar2021.pdf
  • Palmer, W. (2021). United Flies World’s First Passenger Flight On 100% Sustainable Aviation Fuel Supplying One of Its Engines. https://www.ge.com/news/reports/united-flies-worlds-first-passenger-flight-on-100- sustainable-aviation-fuel-supplying-one
  • Reuters. (2021). current targets on sustainable aviation fuel “pathetic.” https://www.reuters.com/business/aerospace-defense/uks-johnson-says-current-targets-sustainable-aviationİbrahim,
  • fuel-pathetic-2021-11-02/
  • Ribeiro, L. A., Pereira da Silva, P., Ribeiro, L., & Dotti, F. L. (2017). Modelling the impacts of policies on advanced biofuel feedstocks diffusion. Journal of Cleaner Production, 142, 2471–2479. https://doi.org/10.1016/j.jclepro.2016.11.027
  • Ricardo Energy and Environment. (2020). Targeted Aviation Advanced Biofuels Demonstration Competition – Feasibility Study Final Report for Department for Transport, UK. https://docslib.org/doc/10188308/targetedaviation- advanced-biofuels-demonstration-competition-feasibility-study-final-report-report-for-departmentfor- transport-uk
  • Ritchie, H. (2020). Climate change and flying: what share of global CO2 emissions come from aviation? https://ourworldindata.org/co2-emissions-from-aviation Schäfer, A. W., Barrett, S. R. H., Doyme, K., Dray, L. M., Gnadt, A. R., Self, R., O’Sullivan, A., Synodinos,
  • A. P., & Torija, A. J. (2018). Technological, economic and environmental prospects of all-electric aircraft. Nature Energy, 4(2), 160–166. https://doi.org/10.1038/s41560-018-0294-x
  • Scheelhaase, J., Maertens, S., & Grimme, W. (2019). Synthetic fuels in aviation – Current barriers and potential political measures. Transportation Research Procedia, 43, 21–30. https://doi.org/10.1016/j.trpro.2019.12.015
  • Schillo, R. S., Isabelle, D. A., & Shakiba, A. (2017). Linking advanced biofuels policies with stakeholder interests: A method building on Quality Function Deployment. Energy Policy, 100, 126–137. https://doi.org/10.1016/j.enpol.2016.09.056
  • Seber, G., Malina, R., Pearlson, M. N., Olcay, H., Hileman, J. I., & Barrett, S. R. H. (2014). Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass and Bioenergy, 67, 108–118. https://doi.org/10.1016/j.biombioe.2014.04.024
  • Shahabuddin, M., Alam, M. T., Krishna, B. B., Bhaskar, T., & Perkins, G. (2020). A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresource Technology, 312, 123596. https://doi.org/10.1016/j.biortech.2020.123596 Shahmardan, A., & Hendijani Zadeh, M. (2013). An integrated approach for solving a MCDM problem, combination of entropy fuzzy and F-PROMETHEE techniques. Journal of Industrial Engineering and Management, 6(4), 1124–1138. https://doi.org/10.3926/jiem.899
  • Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248. https://doi.org/10.1016/j.pecs.2017.04.001
  • SkyNRG. (2020). Technology | Sustainable Aviation Fuel. https://skynrg.com/sustainable-aviationfuel/ technology/ Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., & Barrett, S. R. H. (2018). Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy, 114, 342–354. https://doi.org/10.1016/j.enpol.2017.12.007
  • The Royal Society. (2019). Sustainable synthetic carbon based fuels for transport. https://royalsociety.org/- /media/policy/projects/synthetic-fuels/synthetic-fuels-briefing.pdf Timperley, J. (2021). The Fastest Ways Aviation Could Cut Emissions. https://www.bbc.com/future/article/20210525-how-aviation-is-reducing-its-climate-emissions
  • Trejo-Pech, C. O., Larson, J. A., English, B. C., & Yu, T. E. (2019). Cost and Profitability Analysis of a Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA. Energies, 12(16), 3055. https://doi.org/10.3390/en12163055
  • Trivedi, P., Olcay, H., Staples, M. D., Withers, M. R., Malina, R., & Barrett, S. R. H. (2015). Energy return on investment for alternative jet fuels. Applied Energy, 141, 167–174. https://doi.org/10.1016/j.apenergy.2014.12.016 United Nations. (2015). The Paris Agreement. https://www.un.org/en/climatechange/paris-agreement
  • US Dept. Of energy. (2020). Sustainable Aviation Fuel Review of Technical Pathways. https://www.energy.gov/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf İbrahim, Kuşakcı, Abdullah JTOM(8)1, 241-268, 2024 265
  • Wang, Z., Pashaei Kamali, F., Osseweijer, P., & Posada, J. A. (2019). Socioeconomic effects of aviation biofuel production in Brazil: A scenarios-based Input-Output analysis. Journal of Cleaner Production, 230, 1036– 1050. https://doi.org/10.1016/j.jclepro.2019.05.145
  • World Economic Forum. (2020). Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net- Zero Aviation. https://www.weforum.org/reports/clean-skies-for-tomorrow-sustainable-aviation-fuels-as-apathway- to-net-zero-aviation
  • Zemanek, D., Champagne, P., & Mabee, W. (2020). Review of life‐cycle greenhouse‐gas emissions assessments of hydroprocessed renewable fuel from oilseeds. Biofuels, Bioproducts and Biorefining, 14(5), 935–949. https://doi.org/10.1002/bbb.2125
  • Zhang, H., Fang, Y., Wang, M., Appels, L., & Deng, Y. (2020). Prospects and perspectives foster enhanced research on bio-aviation fuels. Journal of Environmental Management, 274, 111214. https://doi.org/10.1016/j.jenvman.2020.111214
  • Zhang, H., Wang, L., Van herle, J., Maréchal, F., & Desideri, U. (2020). Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer. Applied Energy, 270, 115113. https://doi.org/10.1016/j.apenergy.2020.115113
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tasarım (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ibrahim Temam Ibrahim 0009-0003-4902-3297

Ali Osman Kusakci 0000-0003-1411-0369

Amna Abdullah 0000-0001-9422-5144

Erken Görünüm Tarihi 18 Temmuz 2024
Yayımlanma Tarihi 18 Temmuz 2024
Gönderilme Tarihi 19 Aralık 2023
Kabul Tarihi 31 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ibrahim, I. T., Kusakci, A. O., & Abdullah, A. (2024). Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach. Journal of Turkish Operations Management, 8(1), 241-268. https://doi.org/10.56554/jtom.1406562
AMA Ibrahim IT, Kusakci AO, Abdullah A. Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach. JTOM. Temmuz 2024;8(1):241-268. doi:10.56554/jtom.1406562
Chicago Ibrahim, Ibrahim Temam, Ali Osman Kusakci, ve Amna Abdullah. “Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach”. Journal of Turkish Operations Management 8, sy. 1 (Temmuz 2024): 241-68. https://doi.org/10.56554/jtom.1406562.
EndNote Ibrahim IT, Kusakci AO, Abdullah A (01 Temmuz 2024) Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach. Journal of Turkish Operations Management 8 1 241–268.
IEEE I. T. Ibrahim, A. O. Kusakci, ve A. Abdullah, “Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach”, JTOM, c. 8, sy. 1, ss. 241–268, 2024, doi: 10.56554/jtom.1406562.
ISNAD Ibrahim, Ibrahim Temam vd. “Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach”. Journal of Turkish Operations Management 8/1 (Temmuz 2024), 241-268. https://doi.org/10.56554/jtom.1406562.
JAMA Ibrahim IT, Kusakci AO, Abdullah A. Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach. JTOM. 2024;8:241–268.
MLA Ibrahim, Ibrahim Temam vd. “Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach”. Journal of Turkish Operations Management, c. 8, sy. 1, 2024, ss. 241-68, doi:10.56554/jtom.1406562.
Vancouver Ibrahim IT, Kusakci AO, Abdullah A. Assessment of Sustainable Aviation Fuel Production Methods: A Promethee II Approach. JTOM. 2024;8(1):241-68.

2229319697  logo   logo-minik.png 200311739617396