Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of a Non-Linear Cramér-Lundberg Risk Model

Yıl 2022, Cilt: 6 Sayı: 1, 1065 - 1075, 30.06.2022

Öz

In this study, a non-linear version of a Cramér-Lundberg risk model is examined. The objective of this work is to evaluate the ruin probability of a non-linear risk model. The classical linear Cramér-Lundberg model has been widely studied in the literature. However, the linear model is not always realistic. Because an insurance company's premium income cannot always increase linearly. Therefore, it is recommended to adapt premium income as a function which increases monotonically and yet its rate of growth decreases over time. Thus, to account for this, a more realistic non-linear mathematical model has been constructed and investigated, when the premium income function is p(t)=c√t. Then Lundberg type upper bound was calculated for the ruin probability for the model under investigation.

Kaynakça

  • [1] Asmussen, S., Rolski, T., (1994), “Risk Theory in a Periodic Environment: The Cramér-Lundberg Approximation and Lundberg's Inequality”, Mathematics of Operations Research, 19 (2), 410-433.
  • [2] Boikov, A.V., (2002), “The Cramér-Lundberg model with stochastic premium process”, Theory of Probability and Applications, 47, 489-493.
  • [3] Chadjiconstantinidis, S., Politis, K., (2007), "Two-sided bounds for the distribution of the deficit at ruin in the renewal risk model", Insurance: Mathematics and Economics, 41(1), 41-52.
  • [4] Cohen, A., R.Young, V., (2020), “Rate of convergence of the probability of ruin in the Cramér-Lundberg model to its diffusion approximation”, Insurance: Mathematics and Economics, 93, 333-340.
  • [5] Constantinescu, C., Samorodnitsky, G., Zhu, W., (2018), “Ruin probabilities in classical risk models with gamma claims”, Scandinavian Actuarial Journal, 2018(7), 555-575.
  • [6] Cramér, H., (1930), “On the mathematical theory of risk”, Skandinavia Jubilee Volume, Stockholm. Reprinted in: martin-Löf, A. (Ed.) Cramér, H. (1994) Collected Works. Springer, 155-166.
  • [7] Gaier, J., Grandits, P., Schachermayer, W., (2003), “Asymptotic Ruin Probabilities and Optimal Investment”, The Annals of Applied Probability, 13 (3), 1054-1076.
  • [8] Gauchonab, R., Loisela, S., Rullièrea, J., Trufinc, J., (2020), “Optimal prevention strategies in the classical risk model”, Insurance: Mathematics and Economics, 91, 202-208.
  • [9] Gerber, H.U. (1988), “Mathematical fun with ruin theory”, Insurance: Mathematics and Economics, 7(1), 15-23.
  • [10] Kaas R., Goovaerts M., Dhaene J., Denuit M., (2001), “Modern Actuarial Risk Theory”, Kluwer, Boston.
  • [11] Lundberg, F., (1903), “Approximerad framställning av sannolikhetsfunktionen”, Återförsäkring av kollektivrisker. Akad. Afhandling. Almqvist och Wiksell, Uppsala, 7-9.
  • [12] Malinovskii, V.K, (2014), “Improved asymptotic upper bounds on the ruin capital in the Lundberg model of risk”, Insurance: Mathematics and Economics, 55, 301-309.
  • [13] Mikosch, T. (2004), “Non-life insurance mathematics: An Introduction with Stochastic Processes”, Springer-Verlag, Berlin.
  • [14] Mishura, Y., Perestyuk, M., Ragulina, O., (2014), “Ruin probability in a risk model with variable premium intensity and risky investments”, Opuscula Mathematica, 35(2).
  • [15] Rolski, T., Schmidli, H., Schmidt, V., Teugels, J., (1999), “Stochastic Processes for Insurance and Finance”, Wiley, New York.
  • [16] Straub E. (1988), “Non-Life Insurance Methematics”, Springer, New York.
  • [17] Temnov, G., (2014), “Risk Models with Stochastic Premium and Ruin Probability Estimation”, Journal of Mathematical Sciences, 196, 84-96.
  • [18] Willmot, G.E., Lin, X.S., (2001), “Lundberg Approximations for Compound Distributions with Insurance Applications”, Springer, Berlin.
  • [19] Yang H. (1998), “Non-exponential Bounds for Ruin Probability with Interest Effect Included”, Scandinavian Actuarial Journal, 1999(1), 66-79.
  • [20] Zhang, Z., Yang, H., (2009), “On a risk model with stochastic premiums income and dependence between income and loss”, Journal of Computational and Applied Mathematics, 234(1), 44-57.
Yıl 2022, Cilt: 6 Sayı: 1, 1065 - 1075, 30.06.2022

Öz

Kaynakça

  • [1] Asmussen, S., Rolski, T., (1994), “Risk Theory in a Periodic Environment: The Cramér-Lundberg Approximation and Lundberg's Inequality”, Mathematics of Operations Research, 19 (2), 410-433.
  • [2] Boikov, A.V., (2002), “The Cramér-Lundberg model with stochastic premium process”, Theory of Probability and Applications, 47, 489-493.
  • [3] Chadjiconstantinidis, S., Politis, K., (2007), "Two-sided bounds for the distribution of the deficit at ruin in the renewal risk model", Insurance: Mathematics and Economics, 41(1), 41-52.
  • [4] Cohen, A., R.Young, V., (2020), “Rate of convergence of the probability of ruin in the Cramér-Lundberg model to its diffusion approximation”, Insurance: Mathematics and Economics, 93, 333-340.
  • [5] Constantinescu, C., Samorodnitsky, G., Zhu, W., (2018), “Ruin probabilities in classical risk models with gamma claims”, Scandinavian Actuarial Journal, 2018(7), 555-575.
  • [6] Cramér, H., (1930), “On the mathematical theory of risk”, Skandinavia Jubilee Volume, Stockholm. Reprinted in: martin-Löf, A. (Ed.) Cramér, H. (1994) Collected Works. Springer, 155-166.
  • [7] Gaier, J., Grandits, P., Schachermayer, W., (2003), “Asymptotic Ruin Probabilities and Optimal Investment”, The Annals of Applied Probability, 13 (3), 1054-1076.
  • [8] Gauchonab, R., Loisela, S., Rullièrea, J., Trufinc, J., (2020), “Optimal prevention strategies in the classical risk model”, Insurance: Mathematics and Economics, 91, 202-208.
  • [9] Gerber, H.U. (1988), “Mathematical fun with ruin theory”, Insurance: Mathematics and Economics, 7(1), 15-23.
  • [10] Kaas R., Goovaerts M., Dhaene J., Denuit M., (2001), “Modern Actuarial Risk Theory”, Kluwer, Boston.
  • [11] Lundberg, F., (1903), “Approximerad framställning av sannolikhetsfunktionen”, Återförsäkring av kollektivrisker. Akad. Afhandling. Almqvist och Wiksell, Uppsala, 7-9.
  • [12] Malinovskii, V.K, (2014), “Improved asymptotic upper bounds on the ruin capital in the Lundberg model of risk”, Insurance: Mathematics and Economics, 55, 301-309.
  • [13] Mikosch, T. (2004), “Non-life insurance mathematics: An Introduction with Stochastic Processes”, Springer-Verlag, Berlin.
  • [14] Mishura, Y., Perestyuk, M., Ragulina, O., (2014), “Ruin probability in a risk model with variable premium intensity and risky investments”, Opuscula Mathematica, 35(2).
  • [15] Rolski, T., Schmidli, H., Schmidt, V., Teugels, J., (1999), “Stochastic Processes for Insurance and Finance”, Wiley, New York.
  • [16] Straub E. (1988), “Non-Life Insurance Methematics”, Springer, New York.
  • [17] Temnov, G., (2014), “Risk Models with Stochastic Premium and Ruin Probability Estimation”, Journal of Mathematical Sciences, 196, 84-96.
  • [18] Willmot, G.E., Lin, X.S., (2001), “Lundberg Approximations for Compound Distributions with Insurance Applications”, Springer, Berlin.
  • [19] Yang H. (1998), “Non-exponential Bounds for Ruin Probability with Interest Effect Included”, Scandinavian Actuarial Journal, 1999(1), 66-79.
  • [20] Zhang, Z., Yang, H., (2009), “On a risk model with stochastic premiums income and dependence between income and loss”, Journal of Computational and Applied Mathematics, 234(1), 44-57.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İstatistik, Endüstri Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Zulfiye Hanalioglu Bu kişi benim 0000-0003-1197-9421

Yusup Allyyev Bu kişi benim 0000-0001-5410-2705

Tahir Khanıyev 0000-0003-1974-0140

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 16 Şubat 2022
Kabul Tarihi 4 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 1

Kaynak Göster

APA Hanalioglu, Z., Allyyev, Y., & Khanıyev, T. (2022). Investigation of a Non-Linear Cramér-Lundberg Risk Model. Journal of Turkish Operations Management, 6(1), 1065-1075.
AMA Hanalioglu Z, Allyyev Y, Khanıyev T. Investigation of a Non-Linear Cramér-Lundberg Risk Model. JTOM. Haziran 2022;6(1):1065-1075.
Chicago Hanalioglu, Zulfiye, Yusup Allyyev, ve Tahir Khanıyev. “Investigation of a Non-Linear Cramér-Lundberg Risk Model”. Journal of Turkish Operations Management 6, sy. 1 (Haziran 2022): 1065-75.
EndNote Hanalioglu Z, Allyyev Y, Khanıyev T (01 Haziran 2022) Investigation of a Non-Linear Cramér-Lundberg Risk Model. Journal of Turkish Operations Management 6 1 1065–1075.
IEEE Z. Hanalioglu, Y. Allyyev, ve T. Khanıyev, “Investigation of a Non-Linear Cramér-Lundberg Risk Model”, JTOM, c. 6, sy. 1, ss. 1065–1075, 2022.
ISNAD Hanalioglu, Zulfiye vd. “Investigation of a Non-Linear Cramér-Lundberg Risk Model”. Journal of Turkish Operations Management 6/1 (Haziran 2022), 1065-1075.
JAMA Hanalioglu Z, Allyyev Y, Khanıyev T. Investigation of a Non-Linear Cramér-Lundberg Risk Model. JTOM. 2022;6:1065–1075.
MLA Hanalioglu, Zulfiye vd. “Investigation of a Non-Linear Cramér-Lundberg Risk Model”. Journal of Turkish Operations Management, c. 6, sy. 1, 2022, ss. 1065-7.
Vancouver Hanalioglu Z, Allyyev Y, Khanıyev T. Investigation of a Non-Linear Cramér-Lundberg Risk Model. JTOM. 2022;6(1):1065-7.

2229319697  logo   logo-minik.png 200311739617396