Research Article
BibTex RIS Cite

Analyzing Instructional Strategies in Science Education: A Dual Approach Combining Systematic Review and Secondary Qualitative Data Analysis

Year 2024, Volume: 11 Issue: 4, 597 - 616, 31.12.2024
https://doi.org/10.30900/kafkasegt.1503657

Abstract

This study employed a dual research approach, incorporating both systematic review and secondary qualitative data analysis, to investigate instructional strategies and their rationales utilized by pre-service and in-service science teachers (PaIST) in physics topics. We chose widely recognized and readily accessible sources with extensive study coverage, including Web of Science, SCOPUS, Taylor & Francis Online, and ProQuest. Only four studies that conformed to our inclusion and exclusion criteria were identified for examination. The analysis unfolded in two phases: first, the identification of instructional strategies employed by PaIST, and second, the exploration of the underlying rationales guiding their choices. Our findings revealed a diverse array of instructional strategies, encompassing direct instruction, thought experiments, demonstrations, hands-on activities, think-pair-share, peer teaching, laboratory exercises, discussion/questioning techniques, drama, and real-life narratives. The rationales underpinning these strategies were multifaceted, aiming to enhance student motivation, stimulate cognitive development, facilitate collaborative group work, and foster meaningful learning experiences. Despite evidence supporting the effectiveness of various external strategies such as STEM education, out-of-school learning, and project-based teaching on students, pre-service and in-service science teachers appear hesitant to adopt these methods. Further research is needed to explore the barriers and factors influencing their instructional choices.

Ethical Statement

In this study, we declare that the rules stated in the "Higher Education Institutions Scientific Research and Publication Ethics Directive" are complied with and that we do not take any of the actions based on "Actions Against Scientific Research and Publication Ethics". At the same time, we declare that there is no conflict of interest between the authors, which all authors contribute to the study, and that all the responsibility belongs to the article authors in case of all ethical violations. Also, this research is based on secondary data analysis and does not involve research conducted on live subjects. The data has been previously collected from publicly available data sources. Therefore, no ethical approval from an ethics committee is required for the compliance with ethical standards of this research.

References

  • Abell, S.K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea? International Journal of Science Education, 30(10), 1405-1416. doi:10.1080/09500690802187041
  • American Educational Research Association. (2006). Standards for reporting on empirical social science research in AERA publications. Educational Researcher, 35(6), 33–40. https://www.academia.edu/32050123/Standards_for_Reporting_on_Empirical_Social_Science_Research_in_AERA_Publications?from=cover_page
  • Auerbach, C., & Silverstein, L. B. (2003). Qualitative data: An introduction to coding and analysis. NYU Press. Barendsen, E., & Henze, I. (2019). Relating teacher PCK and teacher practice using classroom observation. Research in Science Education, 49(5), 1141-1175. doi:10.1007/s11165-017-9637-z
  • Benabentos, R., Hazari, Z., Stanford, J. S., Potvin, G., Marsteller, P., Thompson, K. V., ... & Kramer, L. (2021). Measuring the implementation of student-centered teaching strategies in lower-and upper-division STEM courses. Journal of Geoscience Education, 69(4), 342-356. doi:10.1080/10899995.2020.1768005
  • Bender, W. N., & Ukeje, I. C. (1989). Instructional strategies in mainstream classrooms: Prediction of the strategies teachers select. Remedial and Special Education, 10(2), 23-30. doi:10.1177/07419325890100020
  • Bielik, T. and Yarden, A. (2016). Promoting the asking of research questions in a high-school biotechnology inquiry-oriented program. International Journal of STEM Education, 3(15), 2-13. doi:10.1186/s40594-016-0048-x
  • Bradbury, L. U. (2010). Educative mentoring: Promoting reform‐based science teaching through mentoring relationships. Science Education, 94(6), 1049-1071. doi:10.1002/sce.20393
  • Brown, C. P., & Lan, Y. C. (2013). The influence of developmentally appropriate practice on children's cognitive development: A qualitative meta-synthesis. Teachers College Record, 115(12), 1-36. doi:10.1177/016146811311501207
  • Chiang, F. K., Diao, S., Ma, H., & Wang, Y. (2017). Effects of hand-on inquiry based learning using LEGO® materials on the learning of eighth-grade physics students. International Journal of Engineering Education, 33(3), 1098-1103.
  • Chou, P. N. (2013). Effect of instructor-provided concept maps and self-directed learning ability on students online hypermedia learning performance. Journal of College Teaching & Learning (TLC), 10(4), 223-234.
  • Clark, A., and Moss, P. (2011). Listening to young children: The mosaic approach (Second edition). National Children’s Bureau.
  • Cook, D., Mulrow, C., & Haynes, R. (1997). Systematic reviews: synthesis of best evidence for clinical decisions. Annals of Internal Medicine, 126(5), 376. doi:10.7326/0003-4819-126-5-199703010-00006
  • Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely-operated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054-2067. doi:10.1016/j.compedu.2011.04.009
  • Engström, S., & Carlhed, C. (2014). Different habitus: different strategies in teaching physics? Relationships between teachers’ social, economic and cultural capital and strategies in teaching physics in upper secondary school. Cultural Studies of Science Education, 9, 699-728. doi:10.1007/s11422-013-9538-z
  • Evers, W. J. G., Brouwers, A., & Tomic, W. (2002). Burnout and self-efficacy: A Study on teachers’ beliefs when implementing an innovative educational system in the Netherlands. British Journal of Educational Psychology, 72, 227-243. doi:10.1348/000709902158865
  • Faikhamta, C. (2013). The development of in-service science teachers’ understandings of and orientations to teaching the nature of science within a PCK-based NOS course. Research in Science Education, 43(2), 847-869. doi:10.1007/s11165-012-9283-4
  • Ford, C. (2018). Effective practice instructional strategies: Design of an instrument to assess teachers’ perception of implementation. Studies in Educational Evaluation, 56, 154-163. doi:10.1016/j.stueduc.2017.12.004
  • Galishnikova, E. M., Baklashova, T. A., & Khafizova, L. V. (2019). Didactic potential of discussion technique in teaching foreign language for pedagogics students. In & R. Valeeva (Ed.), Teacher Education - IFTE 2017, vol 29. European Proceedings of Social and Behavioural Sciences (pp. 206-214). Future Academy. doi:10.15405/epsbs.2017.08.02.25
  • *Gates, H. A., (2008). Middle school science teachers’ perspectives and practices of teaching through inquiry. (Publication No. 3332245) [Doctoral dissertation, University of South Carolina]. ProQuest Dissertations and Theses Global. Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28-42). Routledge Press.
  • Goodnough, K., & Hung, W. (2009). Enhancing pedagogical content knowledge in elementary science. Teaching Education, 20(3), 229-242. doi:10.1080/10476210802578921
  • Grossman, P. L. (1990). The making of a teacher: teacher knowledge and teacher education. Teachers College Press.
  • Günther, S. L., Fleige, J., zu Belzen, A. U., & Krüger, D. (2019). Using the case method to foster preservice biology teachers’ content knowledge and pedagogical content knowledge related to models and modelling. Journal of Science Teacher Education, 30(4), 321-343. doi:10.1080/1046560X.2018.1560208
  • *Hahn, L. L. (2003). Interpretive case studies on the influence of a pre-service contextual science research course on novice science and mathematics teachers. (Publication No.  3156077) [Doctoral dissertation, The Florida State University]. ProQuest Dissertations and Theses Global.
  • Hanuscin, D. L., Lee, M. H., & Akerson, V. L. (2011). Elementary teachers' pedagogical content knowledge for teaching the nature of science. Science Education, 95(1), 145-167. doi:10.1002/sce.20404
  • Heaton, J. (2008). Secondary analysis of qualitative data: An overview. Historical Social Research, 33(3), 33-45. doi:10.12759/hsr.33.2008.3.33-45
  • Higgins, J. P., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration. London, UK.
  • Holstermann, N., Grube, D., & Bögeholz, S. (2010). Hands-on activities and their influence on students’ interest. Research in Science Education, 40(5), 743-757. doi:10.1007/s11165-009-9142-0
  • Hughes, S. W. (2010). A practical example of a siphon at work. Physics Education, 45(2), 162-166. doi:10.1088/0031-9120/45/2/006
  • Jamil, M., Muhammad, Y., & Qureshi, N. (2021). Critical thinking skills development: secondary school science teachers’ perceptions and practices. SJESR, 4(2), 21-30. doi:10.36902/sjesr-vol4-iss2-2021(21-30) Jonassen, D. H., Grabinger, R. S., & Harris, N. D. C. (1991). analyzing and selecting instructional strategies and tactics. Performance Improvement Quarterly, 4(2), 77-97. doi:10.1111/j.1937-8327.1990.tb00456.x
  • Kersting, M., Schrocker, G., & Papantoniou, S. (2021). ‘I loved exploring a new dimension of reality’–a case study of middle-school girls encountering Einsteinian physics in the classroom. International Journal of Science Education, 43(12), 2044-2064. doi:10.1080/09500693.2021.1950943
  • Kıncal, R. Y., Ergül R., & Timur, S. (2007). Effect of cooperative learning method to student achievement in science teaching. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 32, 156-163.
  • Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. Studies in Science Education, 45(2), 169-204. doi:10.1080/03057260903142285
  • Ladachart, L. (2020). Thai first-year preservice science teachers’ orientations toward teaching science. The Asia-Pacific Education Researcher, 29(5), 455-471. doi:10.1007/s40299-019-00498-6
  • Lago, A., Masiero, S., Bramuzzo, S., Callegaro, E., Poloni, E., Corrà, F., & Santovito, G. (2017, March). Exploring microbiology and biotechnologies: a laboratory approach to the study of yeasts and bacteria in primary school. [Paper presentation]. 11th International Technology, Education and Development Conference 2017, Valencia, Spain. doi:10.21125/inted.2017.0992
  • Largan, C. & Morris, T. (2019). Qualitative secondary research: A step-by-step guide. Sage.
  • Lee, O., Hart, J. E., Cuevas, P., & Enders, C. (2004). Professional development in inquiry‐based science for elementary teachers of diverse student groups. Journal of Research in Science Teaching, 41(10), 1021-1043. doi:10.1002/tea.20037
  • Loughran, J. J., Berry, A., & Mulhall, P. (2006). Understanding and developing science teachers' pedagogical content knowledge. Brill.
  • Lune, H., & Berg, B. L. (2017). Qualitative research methods for the social sciences. Pearson. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95-133). Kluwer Academic.
  • Mansour, N. (2009). Science teachers’ beliefs and practices: Issues, implications and research agenda. International Journal of Environmental and Science Education, 4(1), 25–48.
  • Martin, W., Silander, M., & Rutter, S. (2019). Digital games as sources for science analogies: Learning about energy through play. Computers & Education, 130, 1-12. doi:10.1016/j.compedu.2018.11.002
  • McNeal, K. (2005). The influence of a multicultural teacher education program on teachers’ multicultural practices. Intercultural Education, 16(4), 405-419. doi:10.1080/14675980500304405
  • Miranda, R. J. (2010). Urban middle-school teachers’ beliefs about astronomy learner characteristics. Astronomy Education Review, 9(1), 1-9. doi:10.3847/AER2010030
  • Melo, L., Cañada-Cañada, F., González-Gómez, D., & Jeong, J. S. (2020). Exploring pedagogical content knowledge (PCK) of physics teachers in a Colombian secondary school. Education Sciences, 10(362), 2-15. doi:10.3390/educsci10120362
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269.
  • Morine-Dershimer, G., & Kent, T. (1999). The complex nature and sources of teachers´ pedagogical knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 21-50). Kluwer Academic
  • Nilsson, P., & Karlsson, G. (2019). Capturing student teachers’ pedagogical content knowledge (PCK) using CoRes and digital technology. International Journal of Science Education, 41(4), 419-447. doi:10.1080/09500693.2018.1551642
  • Nilsson, P., & Vikström, A. (2015). Making PCK explicit—Capturing science teachers’ pedagogical content knowledge (PCK) in the science classroom. International Journal of Science Education, 37(17), 2836-2857. doi:10.1080/09500693.2015.1106614
  • Oliver, M., McConney, A., & Woods-McConney, A. (2019). The efficacy of inquiry-based instruction in science: a comparative analysis of six countries using pisa 2015. Research in Science Education, 51(S2), 595-616. doi:10.1007/s11165-019-09901-0
  • Osborne, J. (2014). Teaching critical thinking? New directions in science education. School Science Review, 352, 53-62.
  • Özder, H. (2011). Self-efficacy beliefs of novice teachers and their performance in the classroom. Australian Journal of Teacher Education, 36(5), 1-15. doi:10.14221/ajte.2011v36n5.1
  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualization of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261-284. doi:10.1007/s11165-007-9049-6
  • Petticrew, M., & Roberts, H. (2008). Systematic reviews in the social sciences: A practical guide. John Wiley & Sons.
  • Porter, A. C., & Osthoff, E. (1994). External strategies for stimulating and supporting school restructuring. Madison, WI: Wisconsin Center for Educational Research.
  • Rollnick, M., Bennett, J., Rhemtula, N. D., & Ndlovu, T. (2008). The place of subject matter knowledge in pedagogical content knowledge: A case study of South African teachers teaching the amount of substance and chemical equilibrium. International Journal of Science Education, 30(10), 1365- 1387. doi:10.1080/09500690802187025
  • Ruggiano, N., & Perry, T. E. (2019). Conducting secondary analysis of qualitative data: Should we, can we, and how?. Qualitative Social Work, 18(1), 81-97. doi:10.1177/14733250177007
  • Rutherford, F. J., & Ahlgren, A. (1991). Science for all Americans. Oxford University Press.
  • Sağdıç, A. (2024). Shedding light on pre-service science teachers' instructional preferences and hurdles in teaching phases of the moon. Kastamonu Education Journal, 32(2), 201-214. doi:10.24106/kefdergi.1473470
  • Saldaña, J. (2013). The coding manual for qualitative researchers. Sage.
  • *Sæleset, J., & Friedrichsen, P. (2021). Pre-service Science Teachers’ Pedagogical Content Knowledge Integration of Students’ Understanding in Science and Instructional Strategies. Journal of Mathematics, Science and Technology Education, 17(5), 1-18. doi:10.29333/ejmste/10859
  • Scheuch, M., Panhuber, T., Winter, S., Kelemen-Finan, J., Bardy-Durchhalter, M., & Kapelari, S. (2018). Butterflies & wild bees: biology teachers’ PCK development through citizen science. Journal of Biological Education, 52(1), 79-88. doi:10.1080/00219266.2017.1405530
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
  • Shein, P. P., & Tsai, C. Y. (2015). Impact of a scientist–teacher collaborative model on students, teachers, and scientists. International Journal of Science Education, 37(13), 2147-2169. doi:10.1080/09500693.2015.1068465
  • Smith, (2008). Pitpalls and promises: the use of secondary data analysis in educational research. British Journal of Educational Studies, 56(3). 323-339. doi:10.1111/j.1467-8527.2008.00405.x
  • Sepeng, P., & Webb, P. (2012). Exploring mathematical discussion in word problem-solving. Pythagoras, 33(1), 1-8.
  • Szabo, V. and Strang, V. (1997). Secondary analysis of qualitative data. Advances in Nursing Science, 20(2), 66-74. doi:10.1097/00012272-199712000-00008
  • Tafrova-Grigorova, A., Boiadjieva, E., Emilov, I., & Kirova, M. (2012). Science teachers’ attitudes towards constructivist environment: a Bulgarian case. Journal of Baltic Science Education, 11(2), 184-193.
  • Tytler, R. (2003). A window for a purpose: Developing a framework for describing effective science teaching and learning. Research in Science Education, 33(3), 273–298. doi:10.1023/A:1025423704068
  • Ültay, E. (2017). Examination of context-based problem-solving abilities of pre-service physics teachers. Journal of Baltic Science Education, 16(1), 113-122.
  • Van Driel, J. H., Verloop, N., & De Vos, W. (1998). Developing science teachers' pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673-695. doi:10.1002/(SICI)1098-2736(199808)35:6<673::AID-TEA5>3.0.CO;2-J
  • Walan, S. (2020). Embracing digital technology in science classrooms—secondary school teachers’ enacted teaching and reflections on practice. Journal of Science Education and Technology, 29(3), 431-441. doi:10.1007/s10956-020-09828-6
  • Walan, S., Nilsson, P., & Ewen, B. M. (2017). Why inquiry? Primary teachers’ objectives in choosing inquiry-and context-based instructional strategies to stimulate students’ science learning. Research in Science Education, 47, 1055-1074. doi:10.1007/s11165-016-9540-z
  • Wang, L. C., & Chen, M. P. (2012, July). The effects of cognitive-affective interaction strategy on novices' creative performance in game design project. In 2012 IEEE 12th International Conference on Advanced Learning Technologies (pp. 549-553). IEEE
  • Wongsopawiro, D. S, Zwart C. R, & Van Driel, J. H. (2017). Identifying pathways of teachers’ PCK development. Teachers and Teaching: Theory and Practice, 23(2), 191-210. doi:10.1080/13540602.2016.1204286
  • Williams, G., & Clement, J. (2015). Identifying multiple levels of discussion-based teaching strategies for constructing scientific models. International Journal of Science Education, 37(1), 82-107. doi:10.1080/09500693.2014.966257
  • Van Driel, J. H., De Jong, O., & Verloop, N. (2002). The development of preservice chemistry teachers’ pedagogical content knowledge. Science Teacher Education, 86, 572-590. doi:10.1002/sce.10010
  • Vikström, A. (2014). What makes the difference? Teachers explore what must be taught and what must be learned in order to understand the particulate character of matter. Journal of Science Teacher Education, 25(6), 709-727. doi: 10.1007/ s10972-014-9397-9
  • *Yalaki, Y. (2004). Science teachers’ worldviews: a way to understand beliefs and practices. (Publication No. 3156258) [Doctoral dissertation, The Florida State University]. ProQuest Dissertations and Theses Global.
Year 2024, Volume: 11 Issue: 4, 597 - 616, 31.12.2024
https://doi.org/10.30900/kafkasegt.1503657

Abstract

References

  • Abell, S.K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea? International Journal of Science Education, 30(10), 1405-1416. doi:10.1080/09500690802187041
  • American Educational Research Association. (2006). Standards for reporting on empirical social science research in AERA publications. Educational Researcher, 35(6), 33–40. https://www.academia.edu/32050123/Standards_for_Reporting_on_Empirical_Social_Science_Research_in_AERA_Publications?from=cover_page
  • Auerbach, C., & Silverstein, L. B. (2003). Qualitative data: An introduction to coding and analysis. NYU Press. Barendsen, E., & Henze, I. (2019). Relating teacher PCK and teacher practice using classroom observation. Research in Science Education, 49(5), 1141-1175. doi:10.1007/s11165-017-9637-z
  • Benabentos, R., Hazari, Z., Stanford, J. S., Potvin, G., Marsteller, P., Thompson, K. V., ... & Kramer, L. (2021). Measuring the implementation of student-centered teaching strategies in lower-and upper-division STEM courses. Journal of Geoscience Education, 69(4), 342-356. doi:10.1080/10899995.2020.1768005
  • Bender, W. N., & Ukeje, I. C. (1989). Instructional strategies in mainstream classrooms: Prediction of the strategies teachers select. Remedial and Special Education, 10(2), 23-30. doi:10.1177/07419325890100020
  • Bielik, T. and Yarden, A. (2016). Promoting the asking of research questions in a high-school biotechnology inquiry-oriented program. International Journal of STEM Education, 3(15), 2-13. doi:10.1186/s40594-016-0048-x
  • Bradbury, L. U. (2010). Educative mentoring: Promoting reform‐based science teaching through mentoring relationships. Science Education, 94(6), 1049-1071. doi:10.1002/sce.20393
  • Brown, C. P., & Lan, Y. C. (2013). The influence of developmentally appropriate practice on children's cognitive development: A qualitative meta-synthesis. Teachers College Record, 115(12), 1-36. doi:10.1177/016146811311501207
  • Chiang, F. K., Diao, S., Ma, H., & Wang, Y. (2017). Effects of hand-on inquiry based learning using LEGO® materials on the learning of eighth-grade physics students. International Journal of Engineering Education, 33(3), 1098-1103.
  • Chou, P. N. (2013). Effect of instructor-provided concept maps and self-directed learning ability on students online hypermedia learning performance. Journal of College Teaching & Learning (TLC), 10(4), 223-234.
  • Clark, A., and Moss, P. (2011). Listening to young children: The mosaic approach (Second edition). National Children’s Bureau.
  • Cook, D., Mulrow, C., & Haynes, R. (1997). Systematic reviews: synthesis of best evidence for clinical decisions. Annals of Internal Medicine, 126(5), 376. doi:10.7326/0003-4819-126-5-199703010-00006
  • Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely-operated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054-2067. doi:10.1016/j.compedu.2011.04.009
  • Engström, S., & Carlhed, C. (2014). Different habitus: different strategies in teaching physics? Relationships between teachers’ social, economic and cultural capital and strategies in teaching physics in upper secondary school. Cultural Studies of Science Education, 9, 699-728. doi:10.1007/s11422-013-9538-z
  • Evers, W. J. G., Brouwers, A., & Tomic, W. (2002). Burnout and self-efficacy: A Study on teachers’ beliefs when implementing an innovative educational system in the Netherlands. British Journal of Educational Psychology, 72, 227-243. doi:10.1348/000709902158865
  • Faikhamta, C. (2013). The development of in-service science teachers’ understandings of and orientations to teaching the nature of science within a PCK-based NOS course. Research in Science Education, 43(2), 847-869. doi:10.1007/s11165-012-9283-4
  • Ford, C. (2018). Effective practice instructional strategies: Design of an instrument to assess teachers’ perception of implementation. Studies in Educational Evaluation, 56, 154-163. doi:10.1016/j.stueduc.2017.12.004
  • Galishnikova, E. M., Baklashova, T. A., & Khafizova, L. V. (2019). Didactic potential of discussion technique in teaching foreign language for pedagogics students. In & R. Valeeva (Ed.), Teacher Education - IFTE 2017, vol 29. European Proceedings of Social and Behavioural Sciences (pp. 206-214). Future Academy. doi:10.15405/epsbs.2017.08.02.25
  • *Gates, H. A., (2008). Middle school science teachers’ perspectives and practices of teaching through inquiry. (Publication No. 3332245) [Doctoral dissertation, University of South Carolina]. ProQuest Dissertations and Theses Global. Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28-42). Routledge Press.
  • Goodnough, K., & Hung, W. (2009). Enhancing pedagogical content knowledge in elementary science. Teaching Education, 20(3), 229-242. doi:10.1080/10476210802578921
  • Grossman, P. L. (1990). The making of a teacher: teacher knowledge and teacher education. Teachers College Press.
  • Günther, S. L., Fleige, J., zu Belzen, A. U., & Krüger, D. (2019). Using the case method to foster preservice biology teachers’ content knowledge and pedagogical content knowledge related to models and modelling. Journal of Science Teacher Education, 30(4), 321-343. doi:10.1080/1046560X.2018.1560208
  • *Hahn, L. L. (2003). Interpretive case studies on the influence of a pre-service contextual science research course on novice science and mathematics teachers. (Publication No.  3156077) [Doctoral dissertation, The Florida State University]. ProQuest Dissertations and Theses Global.
  • Hanuscin, D. L., Lee, M. H., & Akerson, V. L. (2011). Elementary teachers' pedagogical content knowledge for teaching the nature of science. Science Education, 95(1), 145-167. doi:10.1002/sce.20404
  • Heaton, J. (2008). Secondary analysis of qualitative data: An overview. Historical Social Research, 33(3), 33-45. doi:10.12759/hsr.33.2008.3.33-45
  • Higgins, J. P., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration. London, UK.
  • Holstermann, N., Grube, D., & Bögeholz, S. (2010). Hands-on activities and their influence on students’ interest. Research in Science Education, 40(5), 743-757. doi:10.1007/s11165-009-9142-0
  • Hughes, S. W. (2010). A practical example of a siphon at work. Physics Education, 45(2), 162-166. doi:10.1088/0031-9120/45/2/006
  • Jamil, M., Muhammad, Y., & Qureshi, N. (2021). Critical thinking skills development: secondary school science teachers’ perceptions and practices. SJESR, 4(2), 21-30. doi:10.36902/sjesr-vol4-iss2-2021(21-30) Jonassen, D. H., Grabinger, R. S., & Harris, N. D. C. (1991). analyzing and selecting instructional strategies and tactics. Performance Improvement Quarterly, 4(2), 77-97. doi:10.1111/j.1937-8327.1990.tb00456.x
  • Kersting, M., Schrocker, G., & Papantoniou, S. (2021). ‘I loved exploring a new dimension of reality’–a case study of middle-school girls encountering Einsteinian physics in the classroom. International Journal of Science Education, 43(12), 2044-2064. doi:10.1080/09500693.2021.1950943
  • Kıncal, R. Y., Ergül R., & Timur, S. (2007). Effect of cooperative learning method to student achievement in science teaching. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 32, 156-163.
  • Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. Studies in Science Education, 45(2), 169-204. doi:10.1080/03057260903142285
  • Ladachart, L. (2020). Thai first-year preservice science teachers’ orientations toward teaching science. The Asia-Pacific Education Researcher, 29(5), 455-471. doi:10.1007/s40299-019-00498-6
  • Lago, A., Masiero, S., Bramuzzo, S., Callegaro, E., Poloni, E., Corrà, F., & Santovito, G. (2017, March). Exploring microbiology and biotechnologies: a laboratory approach to the study of yeasts and bacteria in primary school. [Paper presentation]. 11th International Technology, Education and Development Conference 2017, Valencia, Spain. doi:10.21125/inted.2017.0992
  • Largan, C. & Morris, T. (2019). Qualitative secondary research: A step-by-step guide. Sage.
  • Lee, O., Hart, J. E., Cuevas, P., & Enders, C. (2004). Professional development in inquiry‐based science for elementary teachers of diverse student groups. Journal of Research in Science Teaching, 41(10), 1021-1043. doi:10.1002/tea.20037
  • Loughran, J. J., Berry, A., & Mulhall, P. (2006). Understanding and developing science teachers' pedagogical content knowledge. Brill.
  • Lune, H., & Berg, B. L. (2017). Qualitative research methods for the social sciences. Pearson. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95-133). Kluwer Academic.
  • Mansour, N. (2009). Science teachers’ beliefs and practices: Issues, implications and research agenda. International Journal of Environmental and Science Education, 4(1), 25–48.
  • Martin, W., Silander, M., & Rutter, S. (2019). Digital games as sources for science analogies: Learning about energy through play. Computers & Education, 130, 1-12. doi:10.1016/j.compedu.2018.11.002
  • McNeal, K. (2005). The influence of a multicultural teacher education program on teachers’ multicultural practices. Intercultural Education, 16(4), 405-419. doi:10.1080/14675980500304405
  • Miranda, R. J. (2010). Urban middle-school teachers’ beliefs about astronomy learner characteristics. Astronomy Education Review, 9(1), 1-9. doi:10.3847/AER2010030
  • Melo, L., Cañada-Cañada, F., González-Gómez, D., & Jeong, J. S. (2020). Exploring pedagogical content knowledge (PCK) of physics teachers in a Colombian secondary school. Education Sciences, 10(362), 2-15. doi:10.3390/educsci10120362
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269.
  • Morine-Dershimer, G., & Kent, T. (1999). The complex nature and sources of teachers´ pedagogical knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 21-50). Kluwer Academic
  • Nilsson, P., & Karlsson, G. (2019). Capturing student teachers’ pedagogical content knowledge (PCK) using CoRes and digital technology. International Journal of Science Education, 41(4), 419-447. doi:10.1080/09500693.2018.1551642
  • Nilsson, P., & Vikström, A. (2015). Making PCK explicit—Capturing science teachers’ pedagogical content knowledge (PCK) in the science classroom. International Journal of Science Education, 37(17), 2836-2857. doi:10.1080/09500693.2015.1106614
  • Oliver, M., McConney, A., & Woods-McConney, A. (2019). The efficacy of inquiry-based instruction in science: a comparative analysis of six countries using pisa 2015. Research in Science Education, 51(S2), 595-616. doi:10.1007/s11165-019-09901-0
  • Osborne, J. (2014). Teaching critical thinking? New directions in science education. School Science Review, 352, 53-62.
  • Özder, H. (2011). Self-efficacy beliefs of novice teachers and their performance in the classroom. Australian Journal of Teacher Education, 36(5), 1-15. doi:10.14221/ajte.2011v36n5.1
  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualization of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261-284. doi:10.1007/s11165-007-9049-6
  • Petticrew, M., & Roberts, H. (2008). Systematic reviews in the social sciences: A practical guide. John Wiley & Sons.
  • Porter, A. C., & Osthoff, E. (1994). External strategies for stimulating and supporting school restructuring. Madison, WI: Wisconsin Center for Educational Research.
  • Rollnick, M., Bennett, J., Rhemtula, N. D., & Ndlovu, T. (2008). The place of subject matter knowledge in pedagogical content knowledge: A case study of South African teachers teaching the amount of substance and chemical equilibrium. International Journal of Science Education, 30(10), 1365- 1387. doi:10.1080/09500690802187025
  • Ruggiano, N., & Perry, T. E. (2019). Conducting secondary analysis of qualitative data: Should we, can we, and how?. Qualitative Social Work, 18(1), 81-97. doi:10.1177/14733250177007
  • Rutherford, F. J., & Ahlgren, A. (1991). Science for all Americans. Oxford University Press.
  • Sağdıç, A. (2024). Shedding light on pre-service science teachers' instructional preferences and hurdles in teaching phases of the moon. Kastamonu Education Journal, 32(2), 201-214. doi:10.24106/kefdergi.1473470
  • Saldaña, J. (2013). The coding manual for qualitative researchers. Sage.
  • *Sæleset, J., & Friedrichsen, P. (2021). Pre-service Science Teachers’ Pedagogical Content Knowledge Integration of Students’ Understanding in Science and Instructional Strategies. Journal of Mathematics, Science and Technology Education, 17(5), 1-18. doi:10.29333/ejmste/10859
  • Scheuch, M., Panhuber, T., Winter, S., Kelemen-Finan, J., Bardy-Durchhalter, M., & Kapelari, S. (2018). Butterflies & wild bees: biology teachers’ PCK development through citizen science. Journal of Biological Education, 52(1), 79-88. doi:10.1080/00219266.2017.1405530
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
  • Shein, P. P., & Tsai, C. Y. (2015). Impact of a scientist–teacher collaborative model on students, teachers, and scientists. International Journal of Science Education, 37(13), 2147-2169. doi:10.1080/09500693.2015.1068465
  • Smith, (2008). Pitpalls and promises: the use of secondary data analysis in educational research. British Journal of Educational Studies, 56(3). 323-339. doi:10.1111/j.1467-8527.2008.00405.x
  • Sepeng, P., & Webb, P. (2012). Exploring mathematical discussion in word problem-solving. Pythagoras, 33(1), 1-8.
  • Szabo, V. and Strang, V. (1997). Secondary analysis of qualitative data. Advances in Nursing Science, 20(2), 66-74. doi:10.1097/00012272-199712000-00008
  • Tafrova-Grigorova, A., Boiadjieva, E., Emilov, I., & Kirova, M. (2012). Science teachers’ attitudes towards constructivist environment: a Bulgarian case. Journal of Baltic Science Education, 11(2), 184-193.
  • Tytler, R. (2003). A window for a purpose: Developing a framework for describing effective science teaching and learning. Research in Science Education, 33(3), 273–298. doi:10.1023/A:1025423704068
  • Ültay, E. (2017). Examination of context-based problem-solving abilities of pre-service physics teachers. Journal of Baltic Science Education, 16(1), 113-122.
  • Van Driel, J. H., Verloop, N., & De Vos, W. (1998). Developing science teachers' pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673-695. doi:10.1002/(SICI)1098-2736(199808)35:6<673::AID-TEA5>3.0.CO;2-J
  • Walan, S. (2020). Embracing digital technology in science classrooms—secondary school teachers’ enacted teaching and reflections on practice. Journal of Science Education and Technology, 29(3), 431-441. doi:10.1007/s10956-020-09828-6
  • Walan, S., Nilsson, P., & Ewen, B. M. (2017). Why inquiry? Primary teachers’ objectives in choosing inquiry-and context-based instructional strategies to stimulate students’ science learning. Research in Science Education, 47, 1055-1074. doi:10.1007/s11165-016-9540-z
  • Wang, L. C., & Chen, M. P. (2012, July). The effects of cognitive-affective interaction strategy on novices' creative performance in game design project. In 2012 IEEE 12th International Conference on Advanced Learning Technologies (pp. 549-553). IEEE
  • Wongsopawiro, D. S, Zwart C. R, & Van Driel, J. H. (2017). Identifying pathways of teachers’ PCK development. Teachers and Teaching: Theory and Practice, 23(2), 191-210. doi:10.1080/13540602.2016.1204286
  • Williams, G., & Clement, J. (2015). Identifying multiple levels of discussion-based teaching strategies for constructing scientific models. International Journal of Science Education, 37(1), 82-107. doi:10.1080/09500693.2014.966257
  • Van Driel, J. H., De Jong, O., & Verloop, N. (2002). The development of preservice chemistry teachers’ pedagogical content knowledge. Science Teacher Education, 86, 572-590. doi:10.1002/sce.10010
  • Vikström, A. (2014). What makes the difference? Teachers explore what must be taught and what must be learned in order to understand the particulate character of matter. Journal of Science Teacher Education, 25(6), 709-727. doi: 10.1007/ s10972-014-9397-9
  • *Yalaki, Y. (2004). Science teachers’ worldviews: a way to understand beliefs and practices. (Publication No. 3156258) [Doctoral dissertation, The Florida State University]. ProQuest Dissertations and Theses Global.
There are 77 citations in total.

Details

Primary Language English
Subjects Instructional Design, Primary Education, Science Education
Journal Section Articles
Authors

Şeyma Irmak 0000-0003-3831-8244

Duygu Yılmaz Ergül 0000-0001-9769-3576

Early Pub Date November 8, 2024
Publication Date December 31, 2024
Submission Date June 23, 2024
Acceptance Date November 8, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Irmak, Ş., & Yılmaz Ergül, D. (2024). Analyzing Instructional Strategies in Science Education: A Dual Approach Combining Systematic Review and Secondary Qualitative Data Analysis. E-Kafkas Journal of Educational Research, 11(4), 597-616. https://doi.org/10.30900/kafkasegt.1503657

19190       23681     19386        19387