BibTex RIS Kaynak Göster

Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma

Yıl 2018, Cilt: 8 Sayı: 2, 462 - 472, 01.06.2018

Öz

Bu çalışmada Boussinesq-Stokes tipi akışkanların kapalı bölgede zamana bağlı akışı incelenmiştir. Problem, zaman değişkenine çok adımlı diferansiyel dönüşüm metodu konum değişkenlerine sonlu fark metodu uygulanarak çözülmüştür. Elde edilen zamana bağlı seri çözümünün yakınsaklığı çok adımlı metot uygulanarak sağlanmıştır. Sonuçlar, Newtonian akışkanlar için grafiklerle literatür ile karşılaştırılarak metodun etkinliği gösterilmiş, şüpheli parçacıkların Newtonian akışkanlar üzerine olan yavaşlatıcı etkisi ise grafiklerle incelenmiştir

Kaynakça

  • Abdel-Halim Hassan, IH. 2004. Differential transform technique for solving higher order initial value problems. Appl. Math. Comput., 154: 299-311.
  • Ayaz, F. 2004. Solutions of the system of differential equations by differential transform method. Appl. Math. Comput., 147: 547-567.
  • Chen, CL., Liu YC. 1998. Solution of two-point boundary-value problems using the differential transformation method. J. Optim. Theory App., 99: 23-35.
  • Chen, S., Tölke, J., Krafczyk, M. 2008. A new method for the numerical solution of vorticity-streamfunction formulations. Comput.. Methods Appl. Mech. En., 198: 367-376.
  • Chien, WL., Rising, H., Ottino, JM., 1986. Laminar mixing and chaotic mixing in several cavity flows. J. Fluid. Mech., 170: 355- 377.
  • Chu, HP., Chen, CL. 2008. Hybrid differential transform and finite difference method to solve the nonlinear heat conduction problem. Commun. Nonlinear Sci. Numer. Simul., 13: 1605- 1614.
  • Chu, HP., Lo, CY., 2007. Application of the hybrid differential transform –finite difference method to nonlinear transient heat conduction problems. Numer. Heat Tr. A-Appl., 53(3): 295-307.
  • Cilingir Süngü, I., Demir, H., 2012a. Solutions of the system of differential equations by differential transform/finite difference method. Nwsa-Phys. Sci., 7(2): 66-73.
  • Cilingir Süngü, I., Demir, H. 2012b. Application of the hybrid differential transform method to the nonlinear equations A.M. Scirp., 3: 246-250.
  • Demir, H. 2005. Numerical modelling of viscoelastic cavity driven flow using finite difference simulations. Appl. Math. Comput., 166: 64-83.
  • Erturk, E., Corke, TC., Gokcol, C. 2005. Numerical solutions of 2-d steady incompressible driven cavity flow at high reynolds numbers. J. Numer.. Meth. Fluids, 48: 747-774.
  • Guo, ZL., Shi, BC., Wang, NC. 2000. Lattice bgk model for incompressible navier-stokes equation. J. Comput. Phys., 165: 288-306.
  • Jang, MJ., Chen, CH., Liy, YC. 2000. On solving the initial value problems using the differential transform method. Appl. Math. Comput., 115: 145-160.
  • Kuo, BL. 2005. Applications of the differential transform method to the solutions of the free convection problem. Appl. Math. Comput., 165: 63-79.
  • Odibat, ZM., Bertelle, C., Aziz-Alaoui, MA., Duchamp, GHE. 2010. A multi-step differential transform method and application to non-chaotic systems. Comput. Math. Appl., 59: 1462-1472.
  • Ottino, JM., Chella, R., 1983. Laminar mixing of polymetric liquids: a brief review and recent theoretical developments. Polym. Eng. Sci., 23: 357-379.
  • Pozrikidis, C. 2001. Fluid Dynamics: Theory, Computation and Numerical Simulation. Accompanied by the Software Library FDLIB, Kluwer (Springer), Heidelberg, Berlin, New York. http://dehesa.freeshell.org/FDLIB/fdlib.shtml
  • Siddheshwar, PG., Pranesh, S. 2004. An analytical study of linear and nonlinear convection in boussinesq-stokes suspensions. Int. J. Nonlinear Mech., 39(1):165-172.
  • Tosoka, N., Kakuda, K. 1994. Development of BEM for convective viscous flow problems, Int. J. Solid Struc., 31: 1847- 1859.
  • Yu, LT., Chen, CK. 1998. The solution of the Blasius equation by the differential transformation method. Math. Comput. Model., 28: 101-111.
  • Zhou, JK. 1986. Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan, P. R. China, In Chinese.

New Algorithm for the Lid-driven Cavity Flow Problem with Boussinesq-Stokes Suspension

Yıl 2018, Cilt: 8 Sayı: 2, 462 - 472, 01.06.2018

Öz

In the present investigation, a streamfunction-vorticity form for Boussinesq-Stokes liquids with suspended particles is suitably used to examine the problem of 2-D unsteady incompressible flow in a square cavity with moving top and bottom wall. A new algorithm is used for this form in order to compute the numerical solutions for high Reynolds numbers up to Re=2500. This algorithm is conducted as a combination of the multi-time-stepping temporal differential transform and the spatial finite difference methods. Convergence of the time-series solution is ensured by multi-time-stepping method. The classical benchmark results of the Newtonian liquid are recovered as a limiting case and the decelerating influence of the suspended particle on the Newtonian liquids’ flow field is clearly elaborated.

Kaynakça

  • Abdel-Halim Hassan, IH. 2004. Differential transform technique for solving higher order initial value problems. Appl. Math. Comput., 154: 299-311.
  • Ayaz, F. 2004. Solutions of the system of differential equations by differential transform method. Appl. Math. Comput., 147: 547-567.
  • Chen, CL., Liu YC. 1998. Solution of two-point boundary-value problems using the differential transformation method. J. Optim. Theory App., 99: 23-35.
  • Chen, S., Tölke, J., Krafczyk, M. 2008. A new method for the numerical solution of vorticity-streamfunction formulations. Comput.. Methods Appl. Mech. En., 198: 367-376.
  • Chien, WL., Rising, H., Ottino, JM., 1986. Laminar mixing and chaotic mixing in several cavity flows. J. Fluid. Mech., 170: 355- 377.
  • Chu, HP., Chen, CL. 2008. Hybrid differential transform and finite difference method to solve the nonlinear heat conduction problem. Commun. Nonlinear Sci. Numer. Simul., 13: 1605- 1614.
  • Chu, HP., Lo, CY., 2007. Application of the hybrid differential transform –finite difference method to nonlinear transient heat conduction problems. Numer. Heat Tr. A-Appl., 53(3): 295-307.
  • Cilingir Süngü, I., Demir, H., 2012a. Solutions of the system of differential equations by differential transform/finite difference method. Nwsa-Phys. Sci., 7(2): 66-73.
  • Cilingir Süngü, I., Demir, H. 2012b. Application of the hybrid differential transform method to the nonlinear equations A.M. Scirp., 3: 246-250.
  • Demir, H. 2005. Numerical modelling of viscoelastic cavity driven flow using finite difference simulations. Appl. Math. Comput., 166: 64-83.
  • Erturk, E., Corke, TC., Gokcol, C. 2005. Numerical solutions of 2-d steady incompressible driven cavity flow at high reynolds numbers. J. Numer.. Meth. Fluids, 48: 747-774.
  • Guo, ZL., Shi, BC., Wang, NC. 2000. Lattice bgk model for incompressible navier-stokes equation. J. Comput. Phys., 165: 288-306.
  • Jang, MJ., Chen, CH., Liy, YC. 2000. On solving the initial value problems using the differential transform method. Appl. Math. Comput., 115: 145-160.
  • Kuo, BL. 2005. Applications of the differential transform method to the solutions of the free convection problem. Appl. Math. Comput., 165: 63-79.
  • Odibat, ZM., Bertelle, C., Aziz-Alaoui, MA., Duchamp, GHE. 2010. A multi-step differential transform method and application to non-chaotic systems. Comput. Math. Appl., 59: 1462-1472.
  • Ottino, JM., Chella, R., 1983. Laminar mixing of polymetric liquids: a brief review and recent theoretical developments. Polym. Eng. Sci., 23: 357-379.
  • Pozrikidis, C. 2001. Fluid Dynamics: Theory, Computation and Numerical Simulation. Accompanied by the Software Library FDLIB, Kluwer (Springer), Heidelberg, Berlin, New York. http://dehesa.freeshell.org/FDLIB/fdlib.shtml
  • Siddheshwar, PG., Pranesh, S. 2004. An analytical study of linear and nonlinear convection in boussinesq-stokes suspensions. Int. J. Nonlinear Mech., 39(1):165-172.
  • Tosoka, N., Kakuda, K. 1994. Development of BEM for convective viscous flow problems, Int. J. Solid Struc., 31: 1847- 1859.
  • Yu, LT., Chen, CK. 1998. The solution of the Blasius equation by the differential transformation method. Math. Comput. Model., 28: 101-111.
  • Zhou, JK. 1986. Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan, P. R. China, In Chinese.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

İnci Çilingir Süngü

Hüseyin Demir

Yayımlanma Tarihi 1 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 2

Kaynak Göster

APA Süngü, İ. Ç., & Demir, H. (2018). Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma. Karaelmas Fen Ve Mühendislik Dergisi, 8(2), 462-472.
AMA Süngü İÇ, Demir H. Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2018;8(2):462-472.
Chicago Süngü, İnci Çilingir, ve Hüseyin Demir. “Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma”. Karaelmas Fen Ve Mühendislik Dergisi 8, sy. 2 (Haziran 2018): 462-72.
EndNote Süngü İÇ, Demir H (01 Haziran 2018) Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma. Karaelmas Fen ve Mühendislik Dergisi 8 2 462–472.
IEEE İ. Ç. Süngü ve H. Demir, “Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma”, Karaelmas Fen ve Mühendislik Dergisi, c. 8, sy. 2, ss. 462–472, 2018.
ISNAD Süngü, İnci Çilingir - Demir, Hüseyin. “Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma”. Karaelmas Fen ve Mühendislik Dergisi 8/2 (Haziran 2018), 462-472.
JAMA Süngü İÇ, Demir H. Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma. Karaelmas Fen ve Mühendislik Dergisi. 2018;8:462–472.
MLA Süngü, İnci Çilingir ve Hüseyin Demir. “Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma”. Karaelmas Fen Ve Mühendislik Dergisi, c. 8, sy. 2, 2018, ss. 462-7.
Vancouver Süngü İÇ, Demir H. Boussinesq-Stokes Süspansiyonlu Duvar Kapak Hareketli Akış Problemi için Yeni Bir Algoritma. Karaelmas Fen ve Mühendislik Dergisi. 2018;8(2):462-7.