Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Cu-Cr-B4C-CNF hybrid composites

Yıl 2022, , 90 - 97, 26.12.2022
https://doi.org/10.55385/kastamonujes.1123018

Öz

In this study, the microstructural properties of Cu-Cr-B4C-CNF hybrid composites produced by powder metallurgy were investigated. While microstructural properties were examined by optical, SEM-EDS and XRD analyzes, hardness test was performed to determine the mechanical properties. The microstructure results, especially the EDS-MAP analysis, showed that the reinforcement elements were relatively homogeneously dispersed in the copper matrix. Since carbon nanofiber has nano size, it was detected in SEM photographs with larger magnification. Cu, CrB2, Cr2B3 and C phases were detected in the microstructure. The hardness of the composite increased with the addition of reinforcement and reached a maximum value (72.5 HB) of 1% of CNF, and after this CNF ratio, a very small decrease in the hardness value occurred. Compared to the undoped copper sample, the hardness value of the Cu-8B4C-6Cr-1CNF hybrid composite increased by approximately 54%.

Kaynakça

  • Islak, S., Çalıgülü, U., Hraam, H. R., Özorak, C., & Koç, V. (2019). Electrical conductivity, microstructure and wear properties of Cu-Mo coatings. Research on Engineering Structures and Materials, 5(2), 137-146.
  • ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol.2, 10th ed., 1990.
  • Deshpande, P. K., & Lin, R. Y. (2006). Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity. Materials Science and Engineering: A, 418(1-2), 137-145.
  • Buytoz, S., Dagdelen, F., Islak, S., Kok, M., Kir, D., & Ercan, E. (2014). Effect of the TiC content on microstructure and thermal properties of Cu–TiC composites prepared by powder metallurgy. Journal of Thermal Analysis and Calorimetry, 117(3), 1277-1283.
  • Chen, H., Jia, C. C., & Li, S. J. (2013). Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration. International Journal of Minerals, Metallurgy, and Materials, 20(2), 180-186.
  • Azimi, M., & Akbari, G. H. (2011). Development of nano-structure Cu–Zr alloys by the mechanical alloying process. Journal of Alloys and Compounds, 509(1), 27-32.
  • Islamgaliev, R. K., Nesterov, K. M., Bourgon, J., Champion, Y., & Valiev, R. Z. (2014). Nanostructured Cu-Cr alloy with high strength and electrical conductivity. Journal of Applied Physics, 115(19), 194301.
  • Correia, J. B., Davies, H. A., & Sellars, C. M. (1997). Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys. Acta Materialia, 45(1), 177-190.
  • Islak, S., Kır, D., & Buytoz, S. (2014). Effect of sintering temperature on electrical and microstructure properties of hot pressed Cu-TiC composites. Science of Sintering, 46(1), 15-21.
  • Rajkovic, V., Bozic, D., & Jovanovic, M. T. (2010). Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites. Materials & Design, 31(4), 1962-1970.
  • Yin, J., Yao, D., Xia, Y., Zuo, K., & Zeng, Y. (2014). The effect of modified interfaces on the mechanical property of β-silicon nitride whiskers reinforced Cu matrix composites. Journal of alloys and compounds, 615, 983-988.
  • Sule, R., Olubambi, P. A., Sigalas, I., Asante, J. K. O., & Garrett, J. C. (2014). Effect of SPS consolidation parameters on submicron Cu and Cu–CNT composites for thermal management. Powder Technology, 258, 198-205.
  • Peng, W., & Sun, K. (2020). Effects of Cu/graphene interface on the mechanical properties of multilayer Cu/graphene composites. Mechanics of Materials, 141, 103270.
  • Schubert, T., Zieliński, W., Michalski, A., Weißgärber, T., & Kieback, B. (2008). Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scripta Materialia, 58(4), 263-266.
  • Torralba, J. D., Da Costa, C. E., & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology, 133(1-2), 203-206.
  • ASTM B962-17, Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle, ASTM International, 2017.
  • TS EN ISO 6506-1:2014. “Metallic materials - Brinell hardness test - Part 1: Test method”, TSE, Ankara, Türkiye.
  • Akkaş, M., Islak, S., & Özorak, C. (2018). Corrosion and wear properties of Cu-TiC composites produced by hot pressing technique. Celal Bayar University Journal of Science, 14(4), 465-469.
  • Lee, D. W., Ha, G. H., & Kim, B. K. (2001). Synthesis of Cu-Al2O3 nano composite powder. Scripta materialia, 44(8-9), 2137-2140.
  • Jha, P., Gautam, R. K., & Tyagi, R. (2017). Friction and wear behavior of Cu–4 wt.% Ni–TiC composites under dry sliding conditions. Friction, 5(4), 437-446.
  • Sun, Y. Z., Li, J. B., Wellburn, D., & Liu, C. S. (2016). Fabrication of wear-resistant layers with lamellar eutectic structure by laser surface alloying using the in situ reaction between Cr and B4C. International Journal of Minerals, Metallurgy, and Materials, 23(11), 1294-1301.
  • Wang, S., Xing, P., Gao, S., Yang, W., Zhuang, Y., & Feng, Z. (2018). Effect of in-situ formed CrB2 on pressureless sintering of B4C. Ceramics International, 44(16), 20367-20374.
  • Rahimian, M., Ehsani, N., Parvin, N., & reza Baharvandi, H. (2009). The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. Journal of Materials Processing Technology, 209(14), 5387-5393.
  • Islak, S., & Çelik, H. (2015). Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments. Science of Sintering, 47(2), 131-143.
  • Lim, J. Y., Oh, S. I., Kim, Y. C., Jee, K. K., Sung, Y. M., & Han, J. H. (2012). Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Materials Science and Engineering: A, 556, 337-342.
  • Islak, S., Özorak, C., Abouacha, N. M. E., Çalıgülü, U., Koç, V., & Küçük, Ö. (2021). The effects of the CNF ratio on the microstructure, corrosion, and mechanical properties of CNF-reinforced diamond cutting tool. Diamond and Related Materials, 119, 108585.
Yıl 2022, , 90 - 97, 26.12.2022
https://doi.org/10.55385/kastamonujes.1123018

Öz

Kaynakça

  • Islak, S., Çalıgülü, U., Hraam, H. R., Özorak, C., & Koç, V. (2019). Electrical conductivity, microstructure and wear properties of Cu-Mo coatings. Research on Engineering Structures and Materials, 5(2), 137-146.
  • ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol.2, 10th ed., 1990.
  • Deshpande, P. K., & Lin, R. Y. (2006). Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity. Materials Science and Engineering: A, 418(1-2), 137-145.
  • Buytoz, S., Dagdelen, F., Islak, S., Kok, M., Kir, D., & Ercan, E. (2014). Effect of the TiC content on microstructure and thermal properties of Cu–TiC composites prepared by powder metallurgy. Journal of Thermal Analysis and Calorimetry, 117(3), 1277-1283.
  • Chen, H., Jia, C. C., & Li, S. J. (2013). Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration. International Journal of Minerals, Metallurgy, and Materials, 20(2), 180-186.
  • Azimi, M., & Akbari, G. H. (2011). Development of nano-structure Cu–Zr alloys by the mechanical alloying process. Journal of Alloys and Compounds, 509(1), 27-32.
  • Islamgaliev, R. K., Nesterov, K. M., Bourgon, J., Champion, Y., & Valiev, R. Z. (2014). Nanostructured Cu-Cr alloy with high strength and electrical conductivity. Journal of Applied Physics, 115(19), 194301.
  • Correia, J. B., Davies, H. A., & Sellars, C. M. (1997). Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys. Acta Materialia, 45(1), 177-190.
  • Islak, S., Kır, D., & Buytoz, S. (2014). Effect of sintering temperature on electrical and microstructure properties of hot pressed Cu-TiC composites. Science of Sintering, 46(1), 15-21.
  • Rajkovic, V., Bozic, D., & Jovanovic, M. T. (2010). Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites. Materials & Design, 31(4), 1962-1970.
  • Yin, J., Yao, D., Xia, Y., Zuo, K., & Zeng, Y. (2014). The effect of modified interfaces on the mechanical property of β-silicon nitride whiskers reinforced Cu matrix composites. Journal of alloys and compounds, 615, 983-988.
  • Sule, R., Olubambi, P. A., Sigalas, I., Asante, J. K. O., & Garrett, J. C. (2014). Effect of SPS consolidation parameters on submicron Cu and Cu–CNT composites for thermal management. Powder Technology, 258, 198-205.
  • Peng, W., & Sun, K. (2020). Effects of Cu/graphene interface on the mechanical properties of multilayer Cu/graphene composites. Mechanics of Materials, 141, 103270.
  • Schubert, T., Zieliński, W., Michalski, A., Weißgärber, T., & Kieback, B. (2008). Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scripta Materialia, 58(4), 263-266.
  • Torralba, J. D., Da Costa, C. E., & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology, 133(1-2), 203-206.
  • ASTM B962-17, Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle, ASTM International, 2017.
  • TS EN ISO 6506-1:2014. “Metallic materials - Brinell hardness test - Part 1: Test method”, TSE, Ankara, Türkiye.
  • Akkaş, M., Islak, S., & Özorak, C. (2018). Corrosion and wear properties of Cu-TiC composites produced by hot pressing technique. Celal Bayar University Journal of Science, 14(4), 465-469.
  • Lee, D. W., Ha, G. H., & Kim, B. K. (2001). Synthesis of Cu-Al2O3 nano composite powder. Scripta materialia, 44(8-9), 2137-2140.
  • Jha, P., Gautam, R. K., & Tyagi, R. (2017). Friction and wear behavior of Cu–4 wt.% Ni–TiC composites under dry sliding conditions. Friction, 5(4), 437-446.
  • Sun, Y. Z., Li, J. B., Wellburn, D., & Liu, C. S. (2016). Fabrication of wear-resistant layers with lamellar eutectic structure by laser surface alloying using the in situ reaction between Cr and B4C. International Journal of Minerals, Metallurgy, and Materials, 23(11), 1294-1301.
  • Wang, S., Xing, P., Gao, S., Yang, W., Zhuang, Y., & Feng, Z. (2018). Effect of in-situ formed CrB2 on pressureless sintering of B4C. Ceramics International, 44(16), 20367-20374.
  • Rahimian, M., Ehsani, N., Parvin, N., & reza Baharvandi, H. (2009). The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. Journal of Materials Processing Technology, 209(14), 5387-5393.
  • Islak, S., & Çelik, H. (2015). Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments. Science of Sintering, 47(2), 131-143.
  • Lim, J. Y., Oh, S. I., Kim, Y. C., Jee, K. K., Sung, Y. M., & Han, J. H. (2012). Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Materials Science and Engineering: A, 556, 337-342.
  • Islak, S., Özorak, C., Abouacha, N. M. E., Çalıgülü, U., Koç, V., & Küçük, Ö. (2021). The effects of the CNF ratio on the microstructure, corrosion, and mechanical properties of CNF-reinforced diamond cutting tool. Diamond and Related Materials, 119, 108585.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Osama Ali Ehbil Kriewah 0000-0002-9991-3517

Serkan Islak 0000-0001-9140-6476

Yayımlanma Tarihi 26 Aralık 2022
Gönderilme Tarihi 30 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kriewah, O. A. E., & Islak, S. (2022). Synthesis of Cu-Cr-B4C-CNF hybrid composites. Kastamonu University Journal of Engineering and Sciences, 8(2), 90-97. https://doi.org/10.55385/kastamonujes.1123018
AMA Kriewah OAE, Islak S. Synthesis of Cu-Cr-B4C-CNF hybrid composites. KUJES. Aralık 2022;8(2):90-97. doi:10.55385/kastamonujes.1123018
Chicago Kriewah, Osama Ali Ehbil, ve Serkan Islak. “Synthesis of Cu-Cr-B4C-CNF Hybrid Composites”. Kastamonu University Journal of Engineering and Sciences 8, sy. 2 (Aralık 2022): 90-97. https://doi.org/10.55385/kastamonujes.1123018.
EndNote Kriewah OAE, Islak S (01 Aralık 2022) Synthesis of Cu-Cr-B4C-CNF hybrid composites. Kastamonu University Journal of Engineering and Sciences 8 2 90–97.
IEEE O. A. E. Kriewah ve S. Islak, “Synthesis of Cu-Cr-B4C-CNF hybrid composites”, KUJES, c. 8, sy. 2, ss. 90–97, 2022, doi: 10.55385/kastamonujes.1123018.
ISNAD Kriewah, Osama Ali Ehbil - Islak, Serkan. “Synthesis of Cu-Cr-B4C-CNF Hybrid Composites”. Kastamonu University Journal of Engineering and Sciences 8/2 (Aralık 2022), 90-97. https://doi.org/10.55385/kastamonujes.1123018.
JAMA Kriewah OAE, Islak S. Synthesis of Cu-Cr-B4C-CNF hybrid composites. KUJES. 2022;8:90–97.
MLA Kriewah, Osama Ali Ehbil ve Serkan Islak. “Synthesis of Cu-Cr-B4C-CNF Hybrid Composites”. Kastamonu University Journal of Engineering and Sciences, c. 8, sy. 2, 2022, ss. 90-97, doi:10.55385/kastamonujes.1123018.
Vancouver Kriewah OAE, Islak S. Synthesis of Cu-Cr-B4C-CNF hybrid composites. KUJES. 2022;8(2):90-7.