Research Article
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 1, 10 - 16, 21.06.2023
https://doi.org/10.55385/kastamonujes.1298104

Abstract

References

  • Gjedrem, T., Robinson, N., & Rye, M. (2012). The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture, 350, 117-129.
  • Cashion, T., Le Manach, F., Zeller, D., & Pauly, D. (2017). Most fish destined for fishmeal production are food‐grade fish. Fish and Fisheries, 18(5), 837-844.
  • Jackson, A. J. (2006). The importance of fishmeal and fish oil in aquaculture diets. International Aquafeed, 9(6), 18-21.
  • Fisheries, F. A. O. F. A. O. (2022). Aquaculture Division. Rome: Food and Agriculture Organization of the United Nations.
  • Tacon, A. G. (2004). Use of fish meal and fish oil in aquaculture: a global perspective. Aquatic Resources, Culture and Development, 12-pp.
  • Péron, G., Mittaine, J. F., & Le Gallic, B. (2010). Where do fishmeal and fish oil products come from? An analysis of the conversion ratios in the global fishmeal industry. Marine policy, 34(4), 815-820.
  • Korkut, A. Y., Kop, A., & Demir, P. (2007). Fish oil, used in fish feeds and its characteristics. Ege Journal of Fisheries and Aquatic Sciences, 24(1).
  • Phung, A. S., Bannenberg, G., Vigor, C., Reversat, G., Oger, C., Roumain, M., ... & Wang, S. C. (2020). Chemical compositional changes in over-oxidized fish oils. Foods, 9(10), 1501.
  • Boran, G., Karaçam, H., & Boran, M. (2006). Changes in the quality of fish oils due to storage temperature and time. Food chemistry, 98(4), 693-698.
  • Hsieh, R. J., & Kinsella, J. E. (1989). Oxidation of polyunsaturated fatty acids: mechanisms, products, and inhibition with emphasis on fish. Advances in food and nutrition research, 33, 233-341.
  • Wang, D., Xiao, H., Lyu, X., Chen, H., & Wei, F. (2023). Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop Science.
  • Vargas, F. C., Gómez, B., Mousavi Khaneghah, A., Strozzi, I., Gavahian, M., Barba, F. J., ... & Lorenzo, J. M. (2019). Assessment of the suitability of pitanga leaf extract as a natural antioxidant for enhancing canola oil stability: Monitoring lipid oxidation parameters. European Journal of Lipid Science and Technology, 121(5), 1800447.
  • Sowbhagya, H. B. (2014). Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Critical reviews in food science and nutrition, 54(3), 389-398.
  • Tint, S. S. Myint, S. H., Than, N. N. (2021). Investıgatıon of Essentıal Oıl from the Leaf and Antıoxıdant Actıvıty of Plant Apıum graveolens l.(tayoke nan-nan). J. Myanmar Acad. Arts Sci, 19(1), 13-49.
  • Hassanen, N. H., Eissa, A. M. F., Hafez, S. A. M., & Mosa, E. A. (2015). Antioxidant and antimicrobial activity of celery (Apium graveolens) and coriander (Coriandrum sativum) herb and seed essential oils. Int. J. Curr. Microbiol. App. Sci, 4(3), 284-296.
  • Kesbiç, O. S., Parrino, V., Acar, Ü., Yilmaz, S., Paro, G. L., & Fazio, F. (2020). Effects of Monterey cypress (Hartw) leaf essential oil as a dietary supplement on growth performance and haematological and biochemical parameters of common carp (L.). Annals of Animal Science, 20(4), 1411-1426.
  • Kesbiç, O. S. (2019). Effects of the cinnamon oil (Cinnamomum verum) on growth performance and blood parameters of rainbow trout (Oncorhynchus mykiss). Turkish Journal of Agriculture-Food Science and Technology, 7(2), 370-376.
  • Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food chemistry, 113(4), 1202-1205.
  • Karami, H., Rasekh, M., & Mirzaee–Ghaleh, E. (2020). Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemometrics and Intelligent Laboratory Systems, 206, 104165.
  • Ellse, L., & Wall, R. (2014). The use of essential oils in veterinary ectoparasite control: a review. Medical and Veterinary Entomology, 28(3), 233-243.
  • Manion, C. R., & Widder, R. M. (2017). Essentials of essential oils. American Journal of Health-System Pharmacy, 74(9), e153-e162.
  • Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer?. Trends in food science & technology, 19(3), 156-164.
  • Basmacioglu, H., Tokusoglu, Ö., & Ergül, M. (2004). The effect of oregano and rosemary essential oils or alpha-tocopheryl acetate on performance and lipid oxidation of meat enriched with n-3 PUFA's in broilers. South African Journal of Animal Science, 34(3).
  • Frankel, E. N. (1984). Lipid oxidation: mechanisms, products and biological significance. Journal of the American Oil Chemists' Society, 61(12), 1908-1917.
  • Schaich, K. M. (2020). Toxicity of lipid oxidation products consumed in the diet. Bailey’s Industrial Oil and Fat Products; John Wiley & Sons: Hoboken, NJ, USA, 1-88.
  • Jayasena, D. D., & Jo, C. (2014). Potential application of essential oils as natural antioxidants in meat and meat products: A review. Food reviews international, 30(1), 71-90.
  • Franz, A. R., Knaak, N., & Fiuza, L. M. (2011). Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus)(Coleoptera, Curculionidae). Revista Brasileira de entomologia, 55, 116-120.
  • Hrebień-Filisińska, A. M., & Bartkowiak, A. (2021). Antioxidative effect of sage (Salvia officinalis L.) macerate as “green extract” in inhibiting the oxidation of fish oil. Antioxidants, 11(1), 100.
  • Kumari, A. J., Venkateshwarlu, G., Choukse, M. K., & Anandan, R. (2014). Effect of essential oil and aqueous extract of ginger (Zingiber officinale) on oxidative stability of fish oil-in-water emulsion. J Food Process Technol, 6(412), 2.
  • Durmus, M., Özogul, Y., Ozyurt, G., Ucar, Y., Kosker, A. R., Yazgan, H., ... & Özogul, F. (2023). Effects of citrus essential oils on the oxidative stability of microencapsulated fish oil by spray-drying. Frontiers in Nutrition, 9, 978130.
  • Gardner, H. W. (1983). Effects of lipid hydroperoxides on food components. Xenobiotics in foods and feeds, 63-84.
  • Mozuraityte, R., Kristinova, V., Standal, I. B., Carvajal, A. K., & Aursand, M. (2016). Oxidative stability and shelf life of fish oil. In Oxidative stability and shelf life of foods containing oils and fats (pp. 209-231). AOCS Press.
  • Rana, M., & Yadav, N. (2017). Celeriac, in Vegetable Crops Science: CRC Press, 939-952.
  • Godlewska, K., Pacyga, P., Michalak, I., Biesiada, A., Szumny, A., Pachura, N., & Piszcz, U. (2020). Field-scale evaluation of botanical extracts effect on the yield, chemical composition and antioxidant activity of celeriac (Apium graveolens L. var. rapaceum). Molecules, 25(18), 4212.
  • Fratta Pasini, A. M., & Cominacini, L. (2023). Potential Benefits of Antioxidant Phytochemicals on Endogenous Antioxidants Defences in Chronic Diseases. Antioxidants, 12(4), 890.
  • Olmedo, R. H., Asensio, C., Nepote, V., Mestrallet, M. G., & Grosso, N. R. (2009). Chemical and sensory stability of fried‐salted peanuts flavored with oregano essential oil and olive oil. Journal of the Science of Food and Agriculture, 89(12), 2128-2136.
  • Emir Çoban, Ö., Patir, B., & Yilmaz, Ö. (2014). Protective effect of essential oils on the shelf life of smoked and vacuum packed rainbow trout (Oncorhynchus mykiss W. 1792) fillets. Journal of food science and technology, 51, 2741-2747.

Protective Effect of Celeriac (Apium graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation

Year 2023, Volume: 9 Issue: 1, 10 - 16, 21.06.2023
https://doi.org/10.55385/kastamonujes.1298104

Abstract

The purpose of this work was to identify the volatile components of essential oil extracted from Celeriac (Apium graveolens) leaves (CEO) and assess its antioxidant performance during the thermal oxidation of fish oil. Steam distillation method and Clevenger apparatus was used to extract of CEO from fresh leafs. The volatile component analysis revealed that 98.81% of the volatile components in the resulting product could be recognized. Following examination, the principal components of the product were discovered to be Phthalide (3-isobutylidene) and Fenipentol with a concentration of 49.42% and 28.45% respectively. The product's antioxidant activity was tested using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) study. The 50% inhibitory concentration value (IC50) for CEO was discovered to be 30.52 ppm by the study. To test the product's ability to protect fish oil from oxidation, CEO ratios of 0% (CEO0), 0.1% (CEO0.1), 0.5% (CEO0.5), 1% (CEO1), and 3% (CEO3) were added to fish oil, and the experimental groups were subjected to 24 hours of oxidation at 70 °C with continuous ventilation. According to the oxidation investigation, the addition of CEO suppressed fish oil oxidation and significantly reduced the product's oxidation radicals (p<0.05) depending on the CEO concentration. According to the study's results, the group with 3% CEO had the lowest oxidation of fish oil caused by temperature and oxygen contamination.

References

  • Gjedrem, T., Robinson, N., & Rye, M. (2012). The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture, 350, 117-129.
  • Cashion, T., Le Manach, F., Zeller, D., & Pauly, D. (2017). Most fish destined for fishmeal production are food‐grade fish. Fish and Fisheries, 18(5), 837-844.
  • Jackson, A. J. (2006). The importance of fishmeal and fish oil in aquaculture diets. International Aquafeed, 9(6), 18-21.
  • Fisheries, F. A. O. F. A. O. (2022). Aquaculture Division. Rome: Food and Agriculture Organization of the United Nations.
  • Tacon, A. G. (2004). Use of fish meal and fish oil in aquaculture: a global perspective. Aquatic Resources, Culture and Development, 12-pp.
  • Péron, G., Mittaine, J. F., & Le Gallic, B. (2010). Where do fishmeal and fish oil products come from? An analysis of the conversion ratios in the global fishmeal industry. Marine policy, 34(4), 815-820.
  • Korkut, A. Y., Kop, A., & Demir, P. (2007). Fish oil, used in fish feeds and its characteristics. Ege Journal of Fisheries and Aquatic Sciences, 24(1).
  • Phung, A. S., Bannenberg, G., Vigor, C., Reversat, G., Oger, C., Roumain, M., ... & Wang, S. C. (2020). Chemical compositional changes in over-oxidized fish oils. Foods, 9(10), 1501.
  • Boran, G., Karaçam, H., & Boran, M. (2006). Changes in the quality of fish oils due to storage temperature and time. Food chemistry, 98(4), 693-698.
  • Hsieh, R. J., & Kinsella, J. E. (1989). Oxidation of polyunsaturated fatty acids: mechanisms, products, and inhibition with emphasis on fish. Advances in food and nutrition research, 33, 233-341.
  • Wang, D., Xiao, H., Lyu, X., Chen, H., & Wei, F. (2023). Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop Science.
  • Vargas, F. C., Gómez, B., Mousavi Khaneghah, A., Strozzi, I., Gavahian, M., Barba, F. J., ... & Lorenzo, J. M. (2019). Assessment of the suitability of pitanga leaf extract as a natural antioxidant for enhancing canola oil stability: Monitoring lipid oxidation parameters. European Journal of Lipid Science and Technology, 121(5), 1800447.
  • Sowbhagya, H. B. (2014). Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Critical reviews in food science and nutrition, 54(3), 389-398.
  • Tint, S. S. Myint, S. H., Than, N. N. (2021). Investıgatıon of Essentıal Oıl from the Leaf and Antıoxıdant Actıvıty of Plant Apıum graveolens l.(tayoke nan-nan). J. Myanmar Acad. Arts Sci, 19(1), 13-49.
  • Hassanen, N. H., Eissa, A. M. F., Hafez, S. A. M., & Mosa, E. A. (2015). Antioxidant and antimicrobial activity of celery (Apium graveolens) and coriander (Coriandrum sativum) herb and seed essential oils. Int. J. Curr. Microbiol. App. Sci, 4(3), 284-296.
  • Kesbiç, O. S., Parrino, V., Acar, Ü., Yilmaz, S., Paro, G. L., & Fazio, F. (2020). Effects of Monterey cypress (Hartw) leaf essential oil as a dietary supplement on growth performance and haematological and biochemical parameters of common carp (L.). Annals of Animal Science, 20(4), 1411-1426.
  • Kesbiç, O. S. (2019). Effects of the cinnamon oil (Cinnamomum verum) on growth performance and blood parameters of rainbow trout (Oncorhynchus mykiss). Turkish Journal of Agriculture-Food Science and Technology, 7(2), 370-376.
  • Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food chemistry, 113(4), 1202-1205.
  • Karami, H., Rasekh, M., & Mirzaee–Ghaleh, E. (2020). Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemometrics and Intelligent Laboratory Systems, 206, 104165.
  • Ellse, L., & Wall, R. (2014). The use of essential oils in veterinary ectoparasite control: a review. Medical and Veterinary Entomology, 28(3), 233-243.
  • Manion, C. R., & Widder, R. M. (2017). Essentials of essential oils. American Journal of Health-System Pharmacy, 74(9), e153-e162.
  • Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer?. Trends in food science & technology, 19(3), 156-164.
  • Basmacioglu, H., Tokusoglu, Ö., & Ergül, M. (2004). The effect of oregano and rosemary essential oils or alpha-tocopheryl acetate on performance and lipid oxidation of meat enriched with n-3 PUFA's in broilers. South African Journal of Animal Science, 34(3).
  • Frankel, E. N. (1984). Lipid oxidation: mechanisms, products and biological significance. Journal of the American Oil Chemists' Society, 61(12), 1908-1917.
  • Schaich, K. M. (2020). Toxicity of lipid oxidation products consumed in the diet. Bailey’s Industrial Oil and Fat Products; John Wiley & Sons: Hoboken, NJ, USA, 1-88.
  • Jayasena, D. D., & Jo, C. (2014). Potential application of essential oils as natural antioxidants in meat and meat products: A review. Food reviews international, 30(1), 71-90.
  • Franz, A. R., Knaak, N., & Fiuza, L. M. (2011). Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus)(Coleoptera, Curculionidae). Revista Brasileira de entomologia, 55, 116-120.
  • Hrebień-Filisińska, A. M., & Bartkowiak, A. (2021). Antioxidative effect of sage (Salvia officinalis L.) macerate as “green extract” in inhibiting the oxidation of fish oil. Antioxidants, 11(1), 100.
  • Kumari, A. J., Venkateshwarlu, G., Choukse, M. K., & Anandan, R. (2014). Effect of essential oil and aqueous extract of ginger (Zingiber officinale) on oxidative stability of fish oil-in-water emulsion. J Food Process Technol, 6(412), 2.
  • Durmus, M., Özogul, Y., Ozyurt, G., Ucar, Y., Kosker, A. R., Yazgan, H., ... & Özogul, F. (2023). Effects of citrus essential oils on the oxidative stability of microencapsulated fish oil by spray-drying. Frontiers in Nutrition, 9, 978130.
  • Gardner, H. W. (1983). Effects of lipid hydroperoxides on food components. Xenobiotics in foods and feeds, 63-84.
  • Mozuraityte, R., Kristinova, V., Standal, I. B., Carvajal, A. K., & Aursand, M. (2016). Oxidative stability and shelf life of fish oil. In Oxidative stability and shelf life of foods containing oils and fats (pp. 209-231). AOCS Press.
  • Rana, M., & Yadav, N. (2017). Celeriac, in Vegetable Crops Science: CRC Press, 939-952.
  • Godlewska, K., Pacyga, P., Michalak, I., Biesiada, A., Szumny, A., Pachura, N., & Piszcz, U. (2020). Field-scale evaluation of botanical extracts effect on the yield, chemical composition and antioxidant activity of celeriac (Apium graveolens L. var. rapaceum). Molecules, 25(18), 4212.
  • Fratta Pasini, A. M., & Cominacini, L. (2023). Potential Benefits of Antioxidant Phytochemicals on Endogenous Antioxidants Defences in Chronic Diseases. Antioxidants, 12(4), 890.
  • Olmedo, R. H., Asensio, C., Nepote, V., Mestrallet, M. G., & Grosso, N. R. (2009). Chemical and sensory stability of fried‐salted peanuts flavored with oregano essential oil and olive oil. Journal of the Science of Food and Agriculture, 89(12), 2128-2136.
  • Emir Çoban, Ö., Patir, B., & Yilmaz, Ö. (2014). Protective effect of essential oils on the shelf life of smoked and vacuum packed rainbow trout (Oncorhynchus mykiss W. 1792) fillets. Journal of food science and technology, 51, 2741-2747.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

O Kesbiç 0000-0002-1576-1836

Early Pub Date June 20, 2023
Publication Date June 21, 2023
Submission Date May 16, 2023
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Kesbiç, O. (2023). Protective Effect of Celeriac (Apium graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation. Kastamonu University Journal of Engineering and Sciences, 9(1), 10-16. https://doi.org/10.55385/kastamonujes.1298104
AMA Kesbiç O. Protective Effect of Celeriac (Apium graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation. KUJES. June 2023;9(1):10-16. doi:10.55385/kastamonujes.1298104
Chicago Kesbiç, O. “Protective Effect of Celeriac (Apium Graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation”. Kastamonu University Journal of Engineering and Sciences 9, no. 1 (June 2023): 10-16. https://doi.org/10.55385/kastamonujes.1298104.
EndNote Kesbiç O (June 1, 2023) Protective Effect of Celeriac (Apium graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation. Kastamonu University Journal of Engineering and Sciences 9 1 10–16.
IEEE O. Kesbiç, “Protective Effect of Celeriac (Apium graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation”, KUJES, vol. 9, no. 1, pp. 10–16, 2023, doi: 10.55385/kastamonujes.1298104.
ISNAD Kesbiç, O. “Protective Effect of Celeriac (Apium Graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation”. Kastamonu University Journal of Engineering and Sciences 9/1 (June 2023), 10-16. https://doi.org/10.55385/kastamonujes.1298104.
JAMA Kesbiç O. Protective Effect of Celeriac (Apium graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation. KUJES. 2023;9:10–16.
MLA Kesbiç, O. “Protective Effect of Celeriac (Apium Graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation”. Kastamonu University Journal of Engineering and Sciences, vol. 9, no. 1, 2023, pp. 10-16, doi:10.55385/kastamonujes.1298104.
Vancouver Kesbiç O. Protective Effect of Celeriac (Apium graveolens) Leaf Essential Oil on Temperature and Oxygen-Induced Fish Oil Oxidation. KUJES. 2023;9(1):10-6.

18397   |   18396|