Araştırma Makalesi
BibTex RIS Kaynak Göster

Seydişehir İlçesinin (Konya-Türkiye) Çevresindeki Makromantarlarda Ağır Metal Birikimlerinin Araştırılması

Yıl 2020, , 143 - 157, 29.09.2020
https://doi.org/10.17475/kastorman.801835

Öz

Çalışmanın amacı: Bu çalışmada Seydişehir ilçesinde bulunan Alüminyum tesislerin çevresinde ve ilçeye yakın alanlarda yetişen özellikle yenen makromantarlardaki ağır metal birikimleri araştırılmıştır.
Çalışma alanı: Konya İli Seydişehir İlçesi ve çevresindeki ormanlık alanlarda 2015-2017 yılları arasında yapılan arazi çalışmalarında makromantar örnekleri toplanmıştır. Arazi çalışmalarında 7 farklı lokaliteden 22 farklı tür tespit edilmiştir.
Materyal ve yöntem: Yörede yetişen makromantarlar tespit edilmiş ve elde edilenler makromantarlarda ICP-MS ile ağır metal analizleri yapılmıştır.
Temel sonuçlar: Elde edilen verilere göre Seydişehir topraklarında Fe ve Al miktarları incelenen diğer ağır metallere göre çok fazla miktarda bulunmuştur. Elde edilen verilere göre toplamda ağır metal içeriği en fazla olan mantar türü Toki Üzerinden toplanan Pleurotus eryngii, (DC.) Quél.’de, toplamda en az ağır metal içeriği ise Madenli 2 lokalitesinden toplanan Suillus collinitus (Fr.) Kuntze, Kuğulu Park lokalitesinden toplanan Gymnopus dryophilus (Bull.) Murrill ve Gölet lokalitesinden toplanan Russula queletii türlerinde tespit edilmiştir.
Araştırma vurguları: Ağır metaller açısından zengin topraklarda yetişen makromantarların besin olarak tüketilmesine dikkat edilmelidir. Aşırı tüketim insan sağlığı açısından sakıncalı durumlar oluşturabilir.

Kaynakça

  • Akgül, H., Sevindik, M., Akata, I., Altuntaş, D., Bal, C. & Doğan, M. (2016). Macrolepiota procera (Scop.) Singer. Mantarının Ağır Metal İçeriklerinin ve Oksidatif Stres Durumunun Belirlenmesi Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 20(3), 504-508.
  • Akın, İ., Alkan, S. & Kaşık, G. (2019). Determination of Heavy Metal Accumulation in Some Mushrooms of Agaricaceae Family Collected from Çorum Province. The Journal of Fungus 10(1), 48-55.
  • Altıntığ, E., Hişir, M. E., & Altundağ, H. (2017). Determination of Cr, Cu, Fe, Ni, Pb and Zn by ICP-OES in mushroom samples from Sakarya, Turkey. Sakarya University Journal of Science, 21(3), 496-504.
  • Al-Garni S. M. (2005) Biosorption of lead by Gram-ve capsulated and non-capsulated bacteria. Water SA,. 31,345–50.
  • Amini, M., Younesi, H., Bahramifar, N., Akbar, A., Lorestani, Z., Ghorbani, F., Daneshi, A. & Sharifzadeh, M. (2008). Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. Hazardous Materials 154, 694.
  • An, X. L. & Zhou, Q. 0X. (2007). Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation. Pubmed, NCBI, 18(8):1897-1902.
  • Assche, F. & Clijsters, H. (1990) Effects of metals on enzyme activity in plants. Plant, Cell and Environment, 24, 1–15.
  • Breitenbach, J., & Kranzlin, F. (1986). Fungi of Switzerland (Vol. Volume 2. Nongilled Fungi). CH-6000 Luzern 9, Switzerland: Verlag Mykologia.
  • Breitenbach, J., & Kranzlin, F. (1991). Fungi of Switzerland (Vol. Volume 3. Boletes and Agarics 1. Part). CH-6000 Luzern 9, Switzerland: Verlag Mykologia.
  • Breitenbach, J., & Kranzlin, F. (1995). Fungi of Switzerland (Vol. Volume 4.). CH-6000 Luzern 9, Switzerland: Verlag Mykologia.
  • Breitenbach, J., & Kranzlin, F. (2005). Fungi of Switzerland (Vol. Volume 5.). CH-6000 Luzern 9, Switzerland.: Verlag Mykologia.
  • Campbell, N.A. & Reece, J.B., (2008). Biyoloji, Altıncı Baskıdan Çeviri, Gündüz, E., Demirsoy, A. ve Türkan, İ. (Çeviri Editörleri), Palme Yayıncılık.
  • Canet, L., Ilpide, M. & Seat, P. (2002). Efficient facilitated transport of lead, cadmium, zinc and silver across a flat sheet-supported liquid membrane mediaed by lasalocid A. Sep. Sci. Technol., 37, 1851–1860.
  • Cibulka, J., Sisak, L., Pulkrab, K., Szakova, J., & Fucikova, A. (1996). Cadmium, lead, mercury, and caesium levels in wild mushrooms and forest berries from different localities of the Czech Republic. Scintia Agriculturae Bohemica, 27, 113-129.
  • Dahncke, R. M. (1993). 1200 Pilze. Stuttgart: AT Verlag.
  • Demirbaş, A. (2000). Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chemistry, 68, 415-419.
  • Demirbaş, A. (2001a). Concentrations of 21 metals in 18 species of mushrooms growing in the East Black sea region. Food Chemistry, 75, 453-457.
  • Demirbaş, A. (2001b). Heavy metal bioaccumulation by mushrooms from artificially fortified soil. Food Chemistry, 74, 293-301.
  • Demirbaş, A. (2001c). Levels of trace elements in the fruiting bodies of mushrooms growing in the East Black sea region. Energy Education Science & Technology, 7(2), 67-81. Demirbaş, A. (2002). Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chemistry, 78, 89-93.
  • Doğan, H. H., Şanda, M. A., Uyanöz, R., Öztürk, C. & Çetin, Ü. (2006). Contents of Metals in Some Wild Mushrooms Its Impact in Human Health. Biological Trace Element Research, 110, 79-94.
  • Dulay, R.M.R., Cabalar, A.C., De Roxas, M.J.B., Concepcion, J.M.P., Cruz, N.E., Esmeralda, M., Jimenez, N., Aguilar, J.C., De Guzman, E.J., Santiago, J.Q., Samoy, J.R., Bustillos, R.G., Kalaw, S.P. & Reyes, R.G. (2015). Proximate composition and antioxidant activity of Panaeolus antillarium, a wild coprophilous mushroom. Current Research in Environmental and Applied Mycology 5(1), 52–59.
  • Durukan, N. (2006). Yukarı Büyük Menderes Nehri havzasındaki Makrofungus¬larda Ağır Metal İçeriklerinin Araştırılması. Doktora Tezi. Süleyman Demirel Üniv., Isparta.
  • Elekes, C. C., Busuioc, G. & Ionita, G. (2010). The bioaccumulation of some heavy metals in the fruiting body of wild growing mushrooms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38, 147–151.
  • Ellis, M. B., & Ellis, J. P. (1990). Fungi Without Gills (Hymenomycetes and Gasteromycetes). London: Chapman and Hil.
  • Esalah, O. J., Weber, M. E. & Vera, J.H. (2000). Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Can. J. Chem. Eng., 78, 948–954.
  • Frankowska, A., Ziolkowska, J., Bielawski, L. & Falandyz, J. (2010). Profile and bioconcentration of minerals by King bolete (Boletus edulis) from the Plocka Dale in Poland. Food Additives and Contamination 3(1), 1–6.
  • Gençcelep, H., Uzun, Y., Tunçtürk, Y. & Demirel, K. (2009). Determination of mineral contents of wildgrown edible mushrooms. Food Chemistry 113: 1033-1036. Grünert, H., & Grünert, R. (1984). Pilze. München: Mosaik Verlag,Gmbh.
  • Grünert, H., & Grünert, R. (1991). Field Guide to Mushrooms of Britain and Europe: The Crowood Press Ltd.
  • Gürsoy, N., Sarikürcü, C., Cengiz, M. & Solak, M. (2009). Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chemistry and Toxicology 47 (9), 2381–2388.
  • Ho, Y. S., Ng, J. C. Y. & McKay, G. (2001). Removal of lead (II) from effluents by sorption on peat using second-order kinetics. Sep. Sci. Technol., 36, 241–261.
  • Ihab, A.altameemi, Thuraya, M.A., Tarikak, N. (2013). Anew simple method for the treatment of waste water containing Cu (II) and Zn(II) Ions using adsorption on dried Conocarpus erectus leaves. Journal of Basrah Researches ((Sciences)), 39( 2), 125-136.
  • Işıldak, Ö., Türkekul, İ., Elmastaş, M., & Tüzen, M. (2004). Analysis of Heavy Metals in Some Wild-Grown Edible Mushrooms from the Middle Black Sea Region, Turkey. Food Chemistry, 86, 547-552.
  • Jorhem, L., & Sundström, B. (1995). Levels of some trace elements in edible fungi. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 201, 311-316.
  • Kalač, P., Burda, J., & Stašková, I. (1991). Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. The Science of the Total Environment, 105, 109-119.
  • Kalač, P. & Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry 69, 273–281.
  • Kalač, P., Svoboda, B., & Havlickova, H. (2004). Contents of detrimental metals mercury, cadmium and lead in wild growing edible mushrooms: a review. Energy Education Science and Technology, 13, 31-38.
  • Kalač, P., Wittingerova, M., Stašková, I., Simak, M., & Bastl, J. (1989). Contents of mercury, lead, and cadmium in mushrooms. Ceskoslovenska Hygiena, 34, 568-576. Karapınar, H. S., Uzun, Y. & Kılıçel, F. (2017). Mineral Contents of Two Wild Morels. Anatolian Journal of Botany, 1(2), 32-36.
  • Kaşık, G. (2010). Mantar Bilimi. KONYA: Marifet Matbaa ve Kağıtçılık.
  • Kaya, A. & Bağ, H. (2010). Trace element contents of edible macrofungi growing in Adiyaman, Turkey. Asian Journal of Chemistry, 22, 1515-1521.
  • Laaksovirta, K., & Alakuijala, P. (1978). Lead, cadmium and zinc content on fungi in the parks of Helsinki. Annales Botanici Fennici, 15, 253-257.
  • Lalotra, P., Gupta, D., Yangdol, R., Sharma, Y. P. & Gupta S. K. (2016). Bioaccumulation of heavy metals in the sporocarps of some wild mushrooms. Current Research in Environmental & Applied Mycology, 6(3), 159–165.
  • Lepšová, A., & Kral, R. (1988). Lead and cadmium in fruiting bodies of macrofungi in the vicinity of a lead smelter. Science of the Total Environment, 76, 129-138.
  • Lepšová, A., & Mejstŕík, V. (1988). Accumulation of trace elements in the fruiting bodies of macrofungi in the Krušné Hory Mountains, Czekhoslovakia. The Science of the Total Environment, 76, 117-128.
  • Magdziak, Z., Mleczek, M., Goliński, P., Siwulski, M.& Szablewska. K. S. (2013). Concentration of minerals in selected edible mushroom species growing in Poland and their effect on human health. Acta Scientiarum Polonorum, Technologia Alimentaria, 12(2), 203–214.
  • Mazurkiewicz, N. & Podlasinska, J. (2014). Bioaccumulation of trace elements in wild-growing edible mushrooms from Lubuskie voivodeship, Poland. Chemistry and Ecology, 30(2), 110–117.
  • Michelot, D., Siobud, E., Dore, J. V., Viel, C., & Poirier, F. (1998). Update of metal content profiles in mushrooms-toxicological implications and tentative approach to the mechanism of bioaccumulation. Toxicon, 36, 1997-2012.
  • Olumuyiwa, S. F., Oluwatoyin, O. A., Olanrewaja, O. & Steve, R.A. (2007). Chemical composition and toxic trace element composition of some Nigerian edible wild mushroom. International Journal of Food Science and Technology, 43, 24–29.
  • Phillips, R. (1981). Mushrooms and Other Fungi of Great Britain and Europe. London.: Pan Books Ltd.
  • Proskura, N., J., P. n., & Skopicz-Radkiewicz, L. (2017). Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in western Poland. Chemosphere, 168, 106-111.
  • Radulescu, C., Stihi, C., Busuioc, G., Gheboianu, A.I. & Popescu, I.V. (2010). Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bulletin of Environmental Contamination and Toxicology 84, 641–646.
  • Raskin, I., Kumar, P. B. A. N., Dushenkov, S., & Salt, D. E. (1994), Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5(3), 285–290.
  • Sarıkürkçü, C., Tepe, B., & Solak, M. H. (2012). Metal Concentrations of Wild Edible Mushrooms from Turkey. Ecology of Food and Nutrition, 51, 346-363. Sesli, E., & Tüzen, M. (1999). Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry, 65, 453-460. Smith, A., & Smith, W. N. (1996). The Mushroom Hunter’s Field Guide. Thunder Bay Press, Universty of Michigan: Michigan.
  • Svoboda, L., Zimmermannová, K., & Kalač, P. (2000). Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emissions area of copper smelter and a mercury smelter. The Science of the Total Environment, 246, 61-76.
  • Şen, İ., Allı, H., Çöl, B., Çelikkollu, M., & Balcı, A. (2012). Trace metal contents of some wild- growing mushrooms Bigadiç (Balıkesir). Turk J Bot, 36, 519-528. Thomas, K. (1992). Heavy metals in urban fungi. Mycologist, 6, 195-196.
  • Türkekul, I., Elmastaş, M., & Tüzen, M. (2004). Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chemistry, 84, 389-392. Tüzen, M. (2003). Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 74, 289-297.
  • Tüzen, M., Özdemir, M., & Demirbaş, A. (1998). Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry, 63, 247-251. Uzun, Y., Gençcelep, H., Kaya, A. & Akçay, M. E. (2011). The Mineral Contents of Some Wild Edible Mushrooms. Ekoloji, 20, 80, 6-12.
  • Vetter, J. (1987). Mineral elements in higher fungi. Mikológiai Közlemények, 26, 125-150.
  • Vetter, J. (1990). Mineral element content of edible and poisonous macrofungi. Acta Aliment., 19, 27-40.
  • Vetter, J. (1993). Toxic elements in certain higher fungi. Food Chemistry, 48, 207-208.
  • Vetter, J. (1994). Data arsenic and cadmium contents of some common mushrooms. Toxicon, 32(1), 11-15.
  • Wang, X. M., Zhang, J., Wub, L. H., Zhao, Y. L., Li, T., Li, J.Q., Wang, Y. Z., & Liu, H. G. (2014). A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry, 151, 279-285.
  • Yamaç, M., Yıldız, D., Sarıkürkçü, C., Çelikkollu, M. ve Solak, M. H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 103, 263-267.
  • Yılmaz, F., Işıloğlu, M., & Merdivan, M. (2003). Heavy metals levels in some macrofungi. Turkish Journal of Botany, 27, 45-56.

An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District

Yıl 2020, , 143 - 157, 29.09.2020
https://doi.org/10.17475/kastorman.801835

Öz

Aim of study: In this study, heavy metal accumulation, around aluminum plants in the Seydişehir district and in the areas close to them were investigated.
Area of study: Macrofungi samples were collected in the field studies carried out between 2015-2017 in the forest areas in Konya province Seydişehir district and its surrounding. In the study areas, twenty-two different species were identified in seven different localities.
Material and methods: Macrofungi grown in the area were identified and heavy metals were analyzed by the ICP-MS in the macrofungi.
Main results: According to the obtained data, the amounts of Fe and Al in Seydişehir soils were found to be excessive compared to the other heavy metals examined. According to the obtained data, the fungi species with the highest content of heavy metals detected was Pleurotus eryngii, (DC.) Quél. collected from Upper site of Toki, and the smallest content of heavy metals in total were found in Suillus collinitus (Fr.) Kuntze collected from the Madenli 2 locality, Gymnopus dryophilus (Bull.) Murrill collected from the Kuğulu Park locality, and Russula queletii collected from the Pond locality.
Research highlights: Caution should be exercised in the consumption of macrofungi grown in soil rich in heavy metals. Excessive consumption can have a negative effect on human health.

Kaynakça

  • Akgül, H., Sevindik, M., Akata, I., Altuntaş, D., Bal, C. & Doğan, M. (2016). Macrolepiota procera (Scop.) Singer. Mantarının Ağır Metal İçeriklerinin ve Oksidatif Stres Durumunun Belirlenmesi Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 20(3), 504-508.
  • Akın, İ., Alkan, S. & Kaşık, G. (2019). Determination of Heavy Metal Accumulation in Some Mushrooms of Agaricaceae Family Collected from Çorum Province. The Journal of Fungus 10(1), 48-55.
  • Altıntığ, E., Hişir, M. E., & Altundağ, H. (2017). Determination of Cr, Cu, Fe, Ni, Pb and Zn by ICP-OES in mushroom samples from Sakarya, Turkey. Sakarya University Journal of Science, 21(3), 496-504.
  • Al-Garni S. M. (2005) Biosorption of lead by Gram-ve capsulated and non-capsulated bacteria. Water SA,. 31,345–50.
  • Amini, M., Younesi, H., Bahramifar, N., Akbar, A., Lorestani, Z., Ghorbani, F., Daneshi, A. & Sharifzadeh, M. (2008). Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. Hazardous Materials 154, 694.
  • An, X. L. & Zhou, Q. 0X. (2007). Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation. Pubmed, NCBI, 18(8):1897-1902.
  • Assche, F. & Clijsters, H. (1990) Effects of metals on enzyme activity in plants. Plant, Cell and Environment, 24, 1–15.
  • Breitenbach, J., & Kranzlin, F. (1986). Fungi of Switzerland (Vol. Volume 2. Nongilled Fungi). CH-6000 Luzern 9, Switzerland: Verlag Mykologia.
  • Breitenbach, J., & Kranzlin, F. (1991). Fungi of Switzerland (Vol. Volume 3. Boletes and Agarics 1. Part). CH-6000 Luzern 9, Switzerland: Verlag Mykologia.
  • Breitenbach, J., & Kranzlin, F. (1995). Fungi of Switzerland (Vol. Volume 4.). CH-6000 Luzern 9, Switzerland: Verlag Mykologia.
  • Breitenbach, J., & Kranzlin, F. (2005). Fungi of Switzerland (Vol. Volume 5.). CH-6000 Luzern 9, Switzerland.: Verlag Mykologia.
  • Campbell, N.A. & Reece, J.B., (2008). Biyoloji, Altıncı Baskıdan Çeviri, Gündüz, E., Demirsoy, A. ve Türkan, İ. (Çeviri Editörleri), Palme Yayıncılık.
  • Canet, L., Ilpide, M. & Seat, P. (2002). Efficient facilitated transport of lead, cadmium, zinc and silver across a flat sheet-supported liquid membrane mediaed by lasalocid A. Sep. Sci. Technol., 37, 1851–1860.
  • Cibulka, J., Sisak, L., Pulkrab, K., Szakova, J., & Fucikova, A. (1996). Cadmium, lead, mercury, and caesium levels in wild mushrooms and forest berries from different localities of the Czech Republic. Scintia Agriculturae Bohemica, 27, 113-129.
  • Dahncke, R. M. (1993). 1200 Pilze. Stuttgart: AT Verlag.
  • Demirbaş, A. (2000). Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chemistry, 68, 415-419.
  • Demirbaş, A. (2001a). Concentrations of 21 metals in 18 species of mushrooms growing in the East Black sea region. Food Chemistry, 75, 453-457.
  • Demirbaş, A. (2001b). Heavy metal bioaccumulation by mushrooms from artificially fortified soil. Food Chemistry, 74, 293-301.
  • Demirbaş, A. (2001c). Levels of trace elements in the fruiting bodies of mushrooms growing in the East Black sea region. Energy Education Science & Technology, 7(2), 67-81. Demirbaş, A. (2002). Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chemistry, 78, 89-93.
  • Doğan, H. H., Şanda, M. A., Uyanöz, R., Öztürk, C. & Çetin, Ü. (2006). Contents of Metals in Some Wild Mushrooms Its Impact in Human Health. Biological Trace Element Research, 110, 79-94.
  • Dulay, R.M.R., Cabalar, A.C., De Roxas, M.J.B., Concepcion, J.M.P., Cruz, N.E., Esmeralda, M., Jimenez, N., Aguilar, J.C., De Guzman, E.J., Santiago, J.Q., Samoy, J.R., Bustillos, R.G., Kalaw, S.P. & Reyes, R.G. (2015). Proximate composition and antioxidant activity of Panaeolus antillarium, a wild coprophilous mushroom. Current Research in Environmental and Applied Mycology 5(1), 52–59.
  • Durukan, N. (2006). Yukarı Büyük Menderes Nehri havzasındaki Makrofungus¬larda Ağır Metal İçeriklerinin Araştırılması. Doktora Tezi. Süleyman Demirel Üniv., Isparta.
  • Elekes, C. C., Busuioc, G. & Ionita, G. (2010). The bioaccumulation of some heavy metals in the fruiting body of wild growing mushrooms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38, 147–151.
  • Ellis, M. B., & Ellis, J. P. (1990). Fungi Without Gills (Hymenomycetes and Gasteromycetes). London: Chapman and Hil.
  • Esalah, O. J., Weber, M. E. & Vera, J.H. (2000). Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Can. J. Chem. Eng., 78, 948–954.
  • Frankowska, A., Ziolkowska, J., Bielawski, L. & Falandyz, J. (2010). Profile and bioconcentration of minerals by King bolete (Boletus edulis) from the Plocka Dale in Poland. Food Additives and Contamination 3(1), 1–6.
  • Gençcelep, H., Uzun, Y., Tunçtürk, Y. & Demirel, K. (2009). Determination of mineral contents of wildgrown edible mushrooms. Food Chemistry 113: 1033-1036. Grünert, H., & Grünert, R. (1984). Pilze. München: Mosaik Verlag,Gmbh.
  • Grünert, H., & Grünert, R. (1991). Field Guide to Mushrooms of Britain and Europe: The Crowood Press Ltd.
  • Gürsoy, N., Sarikürcü, C., Cengiz, M. & Solak, M. (2009). Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chemistry and Toxicology 47 (9), 2381–2388.
  • Ho, Y. S., Ng, J. C. Y. & McKay, G. (2001). Removal of lead (II) from effluents by sorption on peat using second-order kinetics. Sep. Sci. Technol., 36, 241–261.
  • Ihab, A.altameemi, Thuraya, M.A., Tarikak, N. (2013). Anew simple method for the treatment of waste water containing Cu (II) and Zn(II) Ions using adsorption on dried Conocarpus erectus leaves. Journal of Basrah Researches ((Sciences)), 39( 2), 125-136.
  • Işıldak, Ö., Türkekul, İ., Elmastaş, M., & Tüzen, M. (2004). Analysis of Heavy Metals in Some Wild-Grown Edible Mushrooms from the Middle Black Sea Region, Turkey. Food Chemistry, 86, 547-552.
  • Jorhem, L., & Sundström, B. (1995). Levels of some trace elements in edible fungi. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 201, 311-316.
  • Kalač, P., Burda, J., & Stašková, I. (1991). Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. The Science of the Total Environment, 105, 109-119.
  • Kalač, P. & Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry 69, 273–281.
  • Kalač, P., Svoboda, B., & Havlickova, H. (2004). Contents of detrimental metals mercury, cadmium and lead in wild growing edible mushrooms: a review. Energy Education Science and Technology, 13, 31-38.
  • Kalač, P., Wittingerova, M., Stašková, I., Simak, M., & Bastl, J. (1989). Contents of mercury, lead, and cadmium in mushrooms. Ceskoslovenska Hygiena, 34, 568-576. Karapınar, H. S., Uzun, Y. & Kılıçel, F. (2017). Mineral Contents of Two Wild Morels. Anatolian Journal of Botany, 1(2), 32-36.
  • Kaşık, G. (2010). Mantar Bilimi. KONYA: Marifet Matbaa ve Kağıtçılık.
  • Kaya, A. & Bağ, H. (2010). Trace element contents of edible macrofungi growing in Adiyaman, Turkey. Asian Journal of Chemistry, 22, 1515-1521.
  • Laaksovirta, K., & Alakuijala, P. (1978). Lead, cadmium and zinc content on fungi in the parks of Helsinki. Annales Botanici Fennici, 15, 253-257.
  • Lalotra, P., Gupta, D., Yangdol, R., Sharma, Y. P. & Gupta S. K. (2016). Bioaccumulation of heavy metals in the sporocarps of some wild mushrooms. Current Research in Environmental & Applied Mycology, 6(3), 159–165.
  • Lepšová, A., & Kral, R. (1988). Lead and cadmium in fruiting bodies of macrofungi in the vicinity of a lead smelter. Science of the Total Environment, 76, 129-138.
  • Lepšová, A., & Mejstŕík, V. (1988). Accumulation of trace elements in the fruiting bodies of macrofungi in the Krušné Hory Mountains, Czekhoslovakia. The Science of the Total Environment, 76, 117-128.
  • Magdziak, Z., Mleczek, M., Goliński, P., Siwulski, M.& Szablewska. K. S. (2013). Concentration of minerals in selected edible mushroom species growing in Poland and their effect on human health. Acta Scientiarum Polonorum, Technologia Alimentaria, 12(2), 203–214.
  • Mazurkiewicz, N. & Podlasinska, J. (2014). Bioaccumulation of trace elements in wild-growing edible mushrooms from Lubuskie voivodeship, Poland. Chemistry and Ecology, 30(2), 110–117.
  • Michelot, D., Siobud, E., Dore, J. V., Viel, C., & Poirier, F. (1998). Update of metal content profiles in mushrooms-toxicological implications and tentative approach to the mechanism of bioaccumulation. Toxicon, 36, 1997-2012.
  • Olumuyiwa, S. F., Oluwatoyin, O. A., Olanrewaja, O. & Steve, R.A. (2007). Chemical composition and toxic trace element composition of some Nigerian edible wild mushroom. International Journal of Food Science and Technology, 43, 24–29.
  • Phillips, R. (1981). Mushrooms and Other Fungi of Great Britain and Europe. London.: Pan Books Ltd.
  • Proskura, N., J., P. n., & Skopicz-Radkiewicz, L. (2017). Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in western Poland. Chemosphere, 168, 106-111.
  • Radulescu, C., Stihi, C., Busuioc, G., Gheboianu, A.I. & Popescu, I.V. (2010). Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bulletin of Environmental Contamination and Toxicology 84, 641–646.
  • Raskin, I., Kumar, P. B. A. N., Dushenkov, S., & Salt, D. E. (1994), Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5(3), 285–290.
  • Sarıkürkçü, C., Tepe, B., & Solak, M. H. (2012). Metal Concentrations of Wild Edible Mushrooms from Turkey. Ecology of Food and Nutrition, 51, 346-363. Sesli, E., & Tüzen, M. (1999). Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry, 65, 453-460. Smith, A., & Smith, W. N. (1996). The Mushroom Hunter’s Field Guide. Thunder Bay Press, Universty of Michigan: Michigan.
  • Svoboda, L., Zimmermannová, K., & Kalač, P. (2000). Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emissions area of copper smelter and a mercury smelter. The Science of the Total Environment, 246, 61-76.
  • Şen, İ., Allı, H., Çöl, B., Çelikkollu, M., & Balcı, A. (2012). Trace metal contents of some wild- growing mushrooms Bigadiç (Balıkesir). Turk J Bot, 36, 519-528. Thomas, K. (1992). Heavy metals in urban fungi. Mycologist, 6, 195-196.
  • Türkekul, I., Elmastaş, M., & Tüzen, M. (2004). Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chemistry, 84, 389-392. Tüzen, M. (2003). Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 74, 289-297.
  • Tüzen, M., Özdemir, M., & Demirbaş, A. (1998). Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry, 63, 247-251. Uzun, Y., Gençcelep, H., Kaya, A. & Akçay, M. E. (2011). The Mineral Contents of Some Wild Edible Mushrooms. Ekoloji, 20, 80, 6-12.
  • Vetter, J. (1987). Mineral elements in higher fungi. Mikológiai Közlemények, 26, 125-150.
  • Vetter, J. (1990). Mineral element content of edible and poisonous macrofungi. Acta Aliment., 19, 27-40.
  • Vetter, J. (1993). Toxic elements in certain higher fungi. Food Chemistry, 48, 207-208.
  • Vetter, J. (1994). Data arsenic and cadmium contents of some common mushrooms. Toxicon, 32(1), 11-15.
  • Wang, X. M., Zhang, J., Wub, L. H., Zhao, Y. L., Li, T., Li, J.Q., Wang, Y. Z., & Liu, H. G. (2014). A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry, 151, 279-285.
  • Yamaç, M., Yıldız, D., Sarıkürkçü, C., Çelikkollu, M. ve Solak, M. H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 103, 263-267.
  • Yılmaz, F., Işıloğlu, M., & Merdivan, M. (2003). Heavy metals levels in some macrofungi. Turkish Journal of Botany, 27, 45-56.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Sinan Alkan Bu kişi benim

Giyasettin Kaşık Bu kişi benim

Celaleddin Öztürk Bu kişi benim

Yayımlanma Tarihi 29 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Alkan, S., Kaşık, G., & Öztürk, C. (2020). An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District. Kastamonu University Journal of Forestry Faculty, 20(2), 143-157. https://doi.org/10.17475/kastorman.801835
AMA Alkan S, Kaşık G, Öztürk C. An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District. Kastamonu University Journal of Forestry Faculty. Eylül 2020;20(2):143-157. doi:10.17475/kastorman.801835
Chicago Alkan, Sinan, Giyasettin Kaşık, ve Celaleddin Öztürk. “An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District”. Kastamonu University Journal of Forestry Faculty 20, sy. 2 (Eylül 2020): 143-57. https://doi.org/10.17475/kastorman.801835.
EndNote Alkan S, Kaşık G, Öztürk C (01 Eylül 2020) An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District. Kastamonu University Journal of Forestry Faculty 20 2 143–157.
IEEE S. Alkan, G. Kaşık, ve C. Öztürk, “An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District”, Kastamonu University Journal of Forestry Faculty, c. 20, sy. 2, ss. 143–157, 2020, doi: 10.17475/kastorman.801835.
ISNAD Alkan, Sinan vd. “An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District”. Kastamonu University Journal of Forestry Faculty 20/2 (Eylül 2020), 143-157. https://doi.org/10.17475/kastorman.801835.
JAMA Alkan S, Kaşık G, Öztürk C. An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District. Kastamonu University Journal of Forestry Faculty. 2020;20:143–157.
MLA Alkan, Sinan vd. “An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District”. Kastamonu University Journal of Forestry Faculty, c. 20, sy. 2, 2020, ss. 143-57, doi:10.17475/kastorman.801835.
Vancouver Alkan S, Kaşık G, Öztürk C. An Investigation of Heavy Metal Accumulation in Macrofungi Around the Seydisehir District. Kastamonu University Journal of Forestry Faculty. 2020;20(2):143-57.

14178  14179       14165           14166           14167            14168