Research Article
BibTex RIS Cite

Himantoglossum robertianum (Loisel.) P.Delforge’un Asimbiyotik Tohum Çimlendirilmesinde Sıcaklığın Etkisi

Year 2022, Volume: 22 Issue: 3, 227 - 235, 23.12.2022
https://doi.org/10.17475/kastorman.1215295

Abstract

Çalışmanın amacı: Uluslararası sözleşmeler tarafından korunmasına rağmen, her yıl doğadan milyonlarca orkide yumrusu sökülmekte ve doğal yayılış alanları yok edilmektedir. Bu türlerden biri olan Himantoglossum robertianum, aşırı toplama nedeniyle yok olma tehdidi altındadır ve korunması için önlemler alınmalıdır. Ex-situ korumanın sağlanması için türlerin asimbiyotik ortamda çoğaltılması zorunludur. H. robertianum'da optimum çimlenme sıcaklığı ile ilgili bir çalışma bulunmamaktadır. Bu çalışmanın amacı, türün asimbiyotik koşullarda doku kültürü ortamında ve farklı sıcaklıklarda çimlenme koşullarını belirlemektir.
Çalışma alanı: Çalışma Bursa Teknik Üniversitesi Orman Fakültesi Orman Mühendisliği Bölümü Silvikültür Laboratuvarlarında gerçekleştirilmiştir.
Materyal ve yöntem: Çalışmada H. robertianum tohumları kullanılmıştır. Tohumlar dört farklı sıcaklıkta beş tekerrürlü olarak çimlendirilmiştir. Çimlendirme ortamı olarak Sığma-Phytamax P-6668 kullanılmış ve karanlık koşullarda 275 gün süreyle yürütülmüştür.
Temel sonuçlar: En yüksek çimlenme 20°C’de %23.8 olarak gerçekleşirken, 10°C'de çimlenme elde edilememiştir. İlk 18 haftada 25°C'de çimlenme hızı yüksek iken daha sonra 20°C'de çimlenme hızlanmıştır.
Araştırma vurguları: Bu sonuçlar, H. robertainum tohumlarının çimlenmesinde sıcaklığın önemli bir faktör olduğunu göstermektedir

References

  • Acemi, A., Çobanoğlu, Ö., Türker-Kaya, S. (2019) FTIR-based comparative analysis of glucomannan contents in some tuberous orchids and effects of pre-processing on glucomannan measurement. Journal of Science Food and Agriculture, 99, 3681-3686.
  • Arditti, J. & Ghani, A.K.A. (2000). Numerical and physical properties of orchid seeds and their biological implications. New Phytologist, 145, 367-421.
  • Arditti, J. (1967). Factors affecting the germination of orchid seed. The Botanical Review, 33, 1-97.
  • Arditti, J. Clements, M.A.; Fast, G., et al. (1982). Orchid seed germination and seedling culture: A manual. In: Orchid Biology: Reviews and Perspectives (Vol II), Cornell University Press, Ithaca, New York, USA.
  • Aybeke, M. (2013a). Morphological and histochemical investigations on Himantoglossum robertianum (Loisel.) P. Delforge (Orchidaceae) seeds. Plant Systematics and Evolution, DOI 10.1007/s00606-013-0862-2.
  • Aybeke, M. (2013b). Embryo and protoplast isolation from Barlia robertiana seeds (Orchidaceae). American Journal of Plant Sciences, 4, 1-8. doi:10.4236/ajps.2013.46A001.
  • Aybeke, M. (2013c). Maceration techniques on Barlia (Orchidaceae) seeds. International Research Journal of Plant Sciences, 4(4), 94-96.
  • Baskin, C.C. & Baskin, J.M. (2001). Seeds Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, USA.
  • Baskin, C.C. & Baskin, J.M. (2004). Determining dormancy-breaking and germination requirements from the fewest seeds, In: Guerrant EO, Havens K, Maunder M (Eds) Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Island Press, Washington, DC, USA.
  • Baskin, C.C. & Baskin, J.M. (2014). Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier, Kentucky, USA.
  • Baskin, C.C., Thompson, K. & Baskin, J.M. (2006). Mistakes in germination ecology and how to avoid them. Seed Science Research, 16, 165-168.
  • Bazzicalupo, M., Calevo, J., Adamo, M., Giovannini, A., Copetta, A. & Cornara, L. (2021). Seed micromorphology, in vitro germination, and early-stage seedling morphological traits of Cattleya purpurata (Lindl. & Paxton) Van den Berg. Horticulturae 7, 480. https://doi.org/10.3390/ horticulturae7110480.
  • Calevo, J. & Bazzicalupo, M. (2020). Less is more: low-cost in vitro propagation of an endangered Italian orchid. Nature Conservation Research. 5. 10.24189/ncr.2020.043.
  • Calevo, J., Copetta, A., Marchioni, I., Bazzicalupo, M., Pianta, M., Shirmohammadi, N. & Giovannini, A. (2020). The use of a new culture medium and organic supplement to improve in vitro early stage development of five orchid species. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 1-9.doi:10.1080/11263504.2020.1840454.
  • Calevo, J., Giovannini, A., Cornara, L. & Peccenini, S. (2017). Asybiotic seed germination of hand-pollinated terrestrial orchids. Proc. VI Int. Symp. on Production and Establishment of Micropropagated Plants, Acta Horticulture, 1155. ISHS 2017. DOI 10.17660/ActaHortic.2017.1155.61.
  • Christenhusz, M.J.M. & Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261(3), 201-217.
  • Citil, O.B. & Tekinsen, K.K. (2011). A comparative study on fatty acid composition of salep obtained from some orchidaceae species. Chemistry of Natural Compounds, 46(6), 943-945. Davis, P.H. (1984). Flora of Turkey and East Aegean Islands. Vol.8. Edinburgh at the University Press. UK.
  • Delfolge, P. (2006). Orchids of Europe, North Africa, and the Middle East. 3 rd edition, Timber Press Inc, Oregon USA.
  • Dulić, J., ljubojević, M., Prlaınovıć, I., Barać, G., Narandžić, T. & Ognjanov, V. (2018). Germination and protocorm formation of Ophrys sphegodes MILL. – In Vitro protocol for a rare orchid species, Contemporary Agriculture, 67(3-4), 196-201.
  • Gümüş, C., Ellialtıoğlu, Ş.Ş. & Eman, Ş.B. (2017). Studies for obtaining the protocorms and plantlets in Orchis pinetorum, Anacamptis pyramidalis, and Dactylorhiza nieschalkiorum under in vitro conditions. International Journal of Forestry and Horticulture, (IJFH), 3(3), 28-36. http://dx.doi.org/10.20431/2454-9487.0303005.
  • Haas, N.F. (1977). Asymbiotische vermehrung Europäischer erdorchideen I. Dactylorhiza sambucina (L.). Soó. Die Orchidee, 28, 27-31.
  • Harbeck, M. (1968). Versuche zut Samenvermehrung einiger Dactylorhiza-Arten. Jehresbericht der naturwissenschaftlichen Vereins in Wuppertal, 21/22, 112-118.
  • Johnson, T.R. (2011). Developing a model of orchid seed germination: In vitro studies of the threatened Florida species Bletia purpurea, Dissertation, University of Florida.
  • Johnson, T.R. & Kane, M. (2011). Effects of temperature and light on germination and early seedling development of the pine pink orchid (Bletia purpurea). https://doi.org/10.1111/j.1442-1984.2011.00347.x.
  • Katsalirou, E., Gerakis, A. & Haldas, X. (2019). Optimal scarification times for seeds of two Mediterranean orchids. European Journal of Environmental Sciences, 9(1), 47-52 https://doi.org/10.14712/23361964.2019.6.
  • Katsalirou, E., Gerakis, A., Haldas, X. & Deconninck, G. (2017). Optimal disinfection times for seeds of Mediterranean orchids propagated on nutrient media. European Journal of Environmental Sciences, 7(2), 119-124. https://doi.org/10.14712/23361964.2017.10.
  • Kauth, P.J., Dutra, D., Johnson, T.R., Stewart, S.L., Kane, M.E. & Vendrame, W. (2008). Techniques and applications of in vitro orchid seed germination, Floriculture, Ornamental, and Plant Biotechnology: Advances and Topical Issues, Volume V Chapter: Techniques and applications of in vitro orchid seed germination, Global Science Books, UK.
  • Lee, Y.I., Chee, E. & Yeung, T. (2018). Orchid Propagation: From Laboratories to Greenhouses-Methods and Protocols, , Springer Science+Business Media, LLC, part of Springer Nature. Marıć, M.M. (1995). Plant tissue culture. Publishing house Draganić, Croatia.
  • McCormick, M., Burnett, R. & Whigham, D. (2021). Protocorm-Supporting fungi are retained in roots of mature Tipularia discolor orchids as mycorrhizal fungal diversity increases. Plants. 10, 1251. https://doi.org/ 10.3390/plants10061251.
  • Miyoshi, K. & Mii, M. (1998). Stimulatory effects of sodium and calcium hypochlorite, pre-chilling and cytokinins on the germination of Cypripedium macranthos seed in vitro. Physiologia Plantarum, 102, 481- 486.
  • Molnár, A.V., Nagy, T., Löki, V., Süveges, K., Takács, A., Bódis, J. & Tökölyi, J. (2017). Turkish graveyards as refuges for orchids against tuber harvest. Ecology and Evolution, 1–8, DOI: 10.1002/ece3.3562.
  • Neiland, M.R.M. (1994). Reproductıve Ecology of British and Mediterranean Orchids. Dissertation, University of Aberdeen.
  • Özkoç, I. & Dalcı, M. (1994). Germination of the seeds of Orchis laxiflora Lam. (Orchidaceae) through asymbiotic culture techniques. Turkish Journal of Botany, 18, 46-464.
  • Parlak, S. & Tutar, M. (2012). Some soil properties of the most collected salep orchids in Karaburun Peninsula. Turkey 2. Orchids and Sahlep Workshop, April 25 to 26, 2012, İzmir.
  • Pierce, S., & Belotti, J. (2011). The Conservation of Terrestrial Orchids: from the Alps to the Po Plain of Lombardy. Parco delle Orobie Bergamasche and the Centro Flora Autoctona della Regione Lombardia. The Native Flora Centre, Italy.
  • Ponert, J. Vosolsobě, S., Kmecová, K., & Lipavská, H. (2011). European orchid cultivation-from seed to mature plant. European Journal of Environmental Sciences, 1(2), 95-107.
  • Rasmussen, H.N. & Rasmussen, F.N. (1991). Climactic and seasonal regulation of seed plant establishment in Dactylorhiza majalis inferred from symbiotic experiments in vitro. Lindleyana, 5, 221-227.
  • Rasmussen, H.N. (1995). Terrestrial orchids, from seed to mycotrophic plant. Cambridge University Press, New York.
  • Rasmussen, H.N., Anderson, T.F. & Johansen, B. (1990). Temperature sensitivity of in vitro germination and seedling development of Dactylorhiza majalis (Orchidaceae) with and without a mycorrhizal fungus. Plant, Cell and Environment,13, 171-177.
  • Roca, W.M. (1984). Cassava. In WR Sharp DA Evans, PV Ammirato and Y Yamada (eds.) Handbook of Plant Cell Culture, 2. Macmillan, New York.
  • Rossi, W. (2002). Orchidee d’Italia. Quad. Cons. Natura, 15. Bologna, Min. Ambiente - Ist. Naz. Fauna Selvatica, Italy.
  • Sezik, E. (1967). Turkiye’nin Salepgilleri Ticari Salep Çeşitleri ve Özellikle Muğla Salebi Üzerinde Araştirmalar. Dissertation, İstanbul Universitesi.
  • Sezik, E. (1990). Turkiye’nin orkideleri. Bilim ve Teknik, 269, 5-8.
  • Stewart, S.L. & Kane, M.E. (2006). Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell, Tissue and Organ Culture, 86, 147-158.
  • Stoutamire, W.P. (1974). Terrestrial orchid seedlings. In: Withner CL, ed. The orchids: scientific studies. John Wiley & Sons, New York.
  • Szendrák, E. (1997). Asymbıotıc İn Vitro Seed Germination, Micropropagatıon and Scanning Electron Mıcroscopy of Several Temperate Terrestrial Orchids (Orchidaceae). Dissertation, University of Nebraska.
  • Tekinsen, K.K. & Guner, A. (2009). Chemical composition and physicochemical properties of tubera salep produced from some Orchidaceae species. Food Chemistry, 121, 468-471.
  • Teoh, E.S. (2016). Medicinal Orchids of Asia. Springer, Singapore.
  • Teoh, E.S. (2019). Orchids as Aphrodisiac, Medicine or Food. Springer Nature, Switzerland.
  • Tsutsumi, C., Miyoshi, K., Yukawa, T. & Kato, M. (2011). Responses of seed germination and protocorm formation to light intensity and temperature in epiphytic and terrestrial Liparis (Orchidaceae). Botany, 89, 84-848, doi:10.1139/B11-066.
  • Van Waes, J.M. & Debergh, P.C. (1986). In vitro germination of some Western European orchids. Physiologia Plantarum, 67(2), 253-261, https://doi.org/10.1111/j.1399-3054.1986.tb02452.x.
  • Vaz, A.P., Figueiredo-Ribeiro Rd, R. & Kerbauy, G.B. (2004). Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid. Plant physiology and biochemistry. PPB, 42(5), 41-415. https://doi.org/10.1016/j.plaphy.2004.03.008.

Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum robertianum (Loisel.) P.Delforge

Year 2022, Volume: 22 Issue: 3, 227 - 235, 23.12.2022
https://doi.org/10.17475/kastorman.1215295

Abstract

Aim of study: Despite protection by international agreements, millions of orchid tubers are harvested from their natural distribution areas each year. Of these species, Himantoglossum robertianum is locally threatened due to overharvesting and requires precautionary measures to ensure its protection. Reproduction of the species in an asymbiotic environment is imperative for providing ex-situ protection. There are no studies on optimum germination temperature in H. robertianum. This study aimed to germinate H. robertianum seeds in-vitro under asymbiotic conditions.
Area of study: The study was carried out at the Silviculture Laboratories of Bursa Technical University, Faculty of Forestry, Department of Forestry Engineering.
Material and methods: H. robertianum seeds were used in the study. Seeds were germinated in five replications at four different temperatures (10, 15, 20, and 25°C (± 0.5°C). The study was conducted for 275 days under dark conditions with Sıgma-Phytamax P-6668 used as the medium.
Main results: The highest germination was 23.8% at 20°C and germination was not obtained at 10°C. While germination was faster at 25°C in the first 18 weeks, germination accelerated at 20°C after 18 weeks.
Highlights: These results indicate that temperature is an important factor in the germination of H. robertainum seeds.

References

  • Acemi, A., Çobanoğlu, Ö., Türker-Kaya, S. (2019) FTIR-based comparative analysis of glucomannan contents in some tuberous orchids and effects of pre-processing on glucomannan measurement. Journal of Science Food and Agriculture, 99, 3681-3686.
  • Arditti, J. & Ghani, A.K.A. (2000). Numerical and physical properties of orchid seeds and their biological implications. New Phytologist, 145, 367-421.
  • Arditti, J. (1967). Factors affecting the germination of orchid seed. The Botanical Review, 33, 1-97.
  • Arditti, J. Clements, M.A.; Fast, G., et al. (1982). Orchid seed germination and seedling culture: A manual. In: Orchid Biology: Reviews and Perspectives (Vol II), Cornell University Press, Ithaca, New York, USA.
  • Aybeke, M. (2013a). Morphological and histochemical investigations on Himantoglossum robertianum (Loisel.) P. Delforge (Orchidaceae) seeds. Plant Systematics and Evolution, DOI 10.1007/s00606-013-0862-2.
  • Aybeke, M. (2013b). Embryo and protoplast isolation from Barlia robertiana seeds (Orchidaceae). American Journal of Plant Sciences, 4, 1-8. doi:10.4236/ajps.2013.46A001.
  • Aybeke, M. (2013c). Maceration techniques on Barlia (Orchidaceae) seeds. International Research Journal of Plant Sciences, 4(4), 94-96.
  • Baskin, C.C. & Baskin, J.M. (2001). Seeds Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, USA.
  • Baskin, C.C. & Baskin, J.M. (2004). Determining dormancy-breaking and germination requirements from the fewest seeds, In: Guerrant EO, Havens K, Maunder M (Eds) Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Island Press, Washington, DC, USA.
  • Baskin, C.C. & Baskin, J.M. (2014). Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier, Kentucky, USA.
  • Baskin, C.C., Thompson, K. & Baskin, J.M. (2006). Mistakes in germination ecology and how to avoid them. Seed Science Research, 16, 165-168.
  • Bazzicalupo, M., Calevo, J., Adamo, M., Giovannini, A., Copetta, A. & Cornara, L. (2021). Seed micromorphology, in vitro germination, and early-stage seedling morphological traits of Cattleya purpurata (Lindl. & Paxton) Van den Berg. Horticulturae 7, 480. https://doi.org/10.3390/ horticulturae7110480.
  • Calevo, J. & Bazzicalupo, M. (2020). Less is more: low-cost in vitro propagation of an endangered Italian orchid. Nature Conservation Research. 5. 10.24189/ncr.2020.043.
  • Calevo, J., Copetta, A., Marchioni, I., Bazzicalupo, M., Pianta, M., Shirmohammadi, N. & Giovannini, A. (2020). The use of a new culture medium and organic supplement to improve in vitro early stage development of five orchid species. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 1-9.doi:10.1080/11263504.2020.1840454.
  • Calevo, J., Giovannini, A., Cornara, L. & Peccenini, S. (2017). Asybiotic seed germination of hand-pollinated terrestrial orchids. Proc. VI Int. Symp. on Production and Establishment of Micropropagated Plants, Acta Horticulture, 1155. ISHS 2017. DOI 10.17660/ActaHortic.2017.1155.61.
  • Christenhusz, M.J.M. & Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261(3), 201-217.
  • Citil, O.B. & Tekinsen, K.K. (2011). A comparative study on fatty acid composition of salep obtained from some orchidaceae species. Chemistry of Natural Compounds, 46(6), 943-945. Davis, P.H. (1984). Flora of Turkey and East Aegean Islands. Vol.8. Edinburgh at the University Press. UK.
  • Delfolge, P. (2006). Orchids of Europe, North Africa, and the Middle East. 3 rd edition, Timber Press Inc, Oregon USA.
  • Dulić, J., ljubojević, M., Prlaınovıć, I., Barać, G., Narandžić, T. & Ognjanov, V. (2018). Germination and protocorm formation of Ophrys sphegodes MILL. – In Vitro protocol for a rare orchid species, Contemporary Agriculture, 67(3-4), 196-201.
  • Gümüş, C., Ellialtıoğlu, Ş.Ş. & Eman, Ş.B. (2017). Studies for obtaining the protocorms and plantlets in Orchis pinetorum, Anacamptis pyramidalis, and Dactylorhiza nieschalkiorum under in vitro conditions. International Journal of Forestry and Horticulture, (IJFH), 3(3), 28-36. http://dx.doi.org/10.20431/2454-9487.0303005.
  • Haas, N.F. (1977). Asymbiotische vermehrung Europäischer erdorchideen I. Dactylorhiza sambucina (L.). Soó. Die Orchidee, 28, 27-31.
  • Harbeck, M. (1968). Versuche zut Samenvermehrung einiger Dactylorhiza-Arten. Jehresbericht der naturwissenschaftlichen Vereins in Wuppertal, 21/22, 112-118.
  • Johnson, T.R. (2011). Developing a model of orchid seed germination: In vitro studies of the threatened Florida species Bletia purpurea, Dissertation, University of Florida.
  • Johnson, T.R. & Kane, M. (2011). Effects of temperature and light on germination and early seedling development of the pine pink orchid (Bletia purpurea). https://doi.org/10.1111/j.1442-1984.2011.00347.x.
  • Katsalirou, E., Gerakis, A. & Haldas, X. (2019). Optimal scarification times for seeds of two Mediterranean orchids. European Journal of Environmental Sciences, 9(1), 47-52 https://doi.org/10.14712/23361964.2019.6.
  • Katsalirou, E., Gerakis, A., Haldas, X. & Deconninck, G. (2017). Optimal disinfection times for seeds of Mediterranean orchids propagated on nutrient media. European Journal of Environmental Sciences, 7(2), 119-124. https://doi.org/10.14712/23361964.2017.10.
  • Kauth, P.J., Dutra, D., Johnson, T.R., Stewart, S.L., Kane, M.E. & Vendrame, W. (2008). Techniques and applications of in vitro orchid seed germination, Floriculture, Ornamental, and Plant Biotechnology: Advances and Topical Issues, Volume V Chapter: Techniques and applications of in vitro orchid seed germination, Global Science Books, UK.
  • Lee, Y.I., Chee, E. & Yeung, T. (2018). Orchid Propagation: From Laboratories to Greenhouses-Methods and Protocols, , Springer Science+Business Media, LLC, part of Springer Nature. Marıć, M.M. (1995). Plant tissue culture. Publishing house Draganić, Croatia.
  • McCormick, M., Burnett, R. & Whigham, D. (2021). Protocorm-Supporting fungi are retained in roots of mature Tipularia discolor orchids as mycorrhizal fungal diversity increases. Plants. 10, 1251. https://doi.org/ 10.3390/plants10061251.
  • Miyoshi, K. & Mii, M. (1998). Stimulatory effects of sodium and calcium hypochlorite, pre-chilling and cytokinins on the germination of Cypripedium macranthos seed in vitro. Physiologia Plantarum, 102, 481- 486.
  • Molnár, A.V., Nagy, T., Löki, V., Süveges, K., Takács, A., Bódis, J. & Tökölyi, J. (2017). Turkish graveyards as refuges for orchids against tuber harvest. Ecology and Evolution, 1–8, DOI: 10.1002/ece3.3562.
  • Neiland, M.R.M. (1994). Reproductıve Ecology of British and Mediterranean Orchids. Dissertation, University of Aberdeen.
  • Özkoç, I. & Dalcı, M. (1994). Germination of the seeds of Orchis laxiflora Lam. (Orchidaceae) through asymbiotic culture techniques. Turkish Journal of Botany, 18, 46-464.
  • Parlak, S. & Tutar, M. (2012). Some soil properties of the most collected salep orchids in Karaburun Peninsula. Turkey 2. Orchids and Sahlep Workshop, April 25 to 26, 2012, İzmir.
  • Pierce, S., & Belotti, J. (2011). The Conservation of Terrestrial Orchids: from the Alps to the Po Plain of Lombardy. Parco delle Orobie Bergamasche and the Centro Flora Autoctona della Regione Lombardia. The Native Flora Centre, Italy.
  • Ponert, J. Vosolsobě, S., Kmecová, K., & Lipavská, H. (2011). European orchid cultivation-from seed to mature plant. European Journal of Environmental Sciences, 1(2), 95-107.
  • Rasmussen, H.N. & Rasmussen, F.N. (1991). Climactic and seasonal regulation of seed plant establishment in Dactylorhiza majalis inferred from symbiotic experiments in vitro. Lindleyana, 5, 221-227.
  • Rasmussen, H.N. (1995). Terrestrial orchids, from seed to mycotrophic plant. Cambridge University Press, New York.
  • Rasmussen, H.N., Anderson, T.F. & Johansen, B. (1990). Temperature sensitivity of in vitro germination and seedling development of Dactylorhiza majalis (Orchidaceae) with and without a mycorrhizal fungus. Plant, Cell and Environment,13, 171-177.
  • Roca, W.M. (1984). Cassava. In WR Sharp DA Evans, PV Ammirato and Y Yamada (eds.) Handbook of Plant Cell Culture, 2. Macmillan, New York.
  • Rossi, W. (2002). Orchidee d’Italia. Quad. Cons. Natura, 15. Bologna, Min. Ambiente - Ist. Naz. Fauna Selvatica, Italy.
  • Sezik, E. (1967). Turkiye’nin Salepgilleri Ticari Salep Çeşitleri ve Özellikle Muğla Salebi Üzerinde Araştirmalar. Dissertation, İstanbul Universitesi.
  • Sezik, E. (1990). Turkiye’nin orkideleri. Bilim ve Teknik, 269, 5-8.
  • Stewart, S.L. & Kane, M.E. (2006). Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell, Tissue and Organ Culture, 86, 147-158.
  • Stoutamire, W.P. (1974). Terrestrial orchid seedlings. In: Withner CL, ed. The orchids: scientific studies. John Wiley & Sons, New York.
  • Szendrák, E. (1997). Asymbıotıc İn Vitro Seed Germination, Micropropagatıon and Scanning Electron Mıcroscopy of Several Temperate Terrestrial Orchids (Orchidaceae). Dissertation, University of Nebraska.
  • Tekinsen, K.K. & Guner, A. (2009). Chemical composition and physicochemical properties of tubera salep produced from some Orchidaceae species. Food Chemistry, 121, 468-471.
  • Teoh, E.S. (2016). Medicinal Orchids of Asia. Springer, Singapore.
  • Teoh, E.S. (2019). Orchids as Aphrodisiac, Medicine or Food. Springer Nature, Switzerland.
  • Tsutsumi, C., Miyoshi, K., Yukawa, T. & Kato, M. (2011). Responses of seed germination and protocorm formation to light intensity and temperature in epiphytic and terrestrial Liparis (Orchidaceae). Botany, 89, 84-848, doi:10.1139/B11-066.
  • Van Waes, J.M. & Debergh, P.C. (1986). In vitro germination of some Western European orchids. Physiologia Plantarum, 67(2), 253-261, https://doi.org/10.1111/j.1399-3054.1986.tb02452.x.
  • Vaz, A.P., Figueiredo-Ribeiro Rd, R. & Kerbauy, G.B. (2004). Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid. Plant physiology and biochemistry. PPB, 42(5), 41-415. https://doi.org/10.1016/j.plaphy.2004.03.008.
There are 52 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Salih Parlak This is me

Publication Date December 23, 2022
Published in Issue Year 2022 Volume: 22 Issue: 3

Cite

APA Parlak, S. (2022). Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum robertianum (Loisel.) P.Delforge. Kastamonu University Journal of Forestry Faculty, 22(3), 227-235. https://doi.org/10.17475/kastorman.1215295
AMA Parlak S. Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum robertianum (Loisel.) P.Delforge. Kastamonu University Journal of Forestry Faculty. December 2022;22(3):227-235. doi:10.17475/kastorman.1215295
Chicago Parlak, Salih. “Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum Robertianum (Loisel.) P.Delforge”. Kastamonu University Journal of Forestry Faculty 22, no. 3 (December 2022): 227-35. https://doi.org/10.17475/kastorman.1215295.
EndNote Parlak S (December 1, 2022) Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum robertianum (Loisel.) P.Delforge. Kastamonu University Journal of Forestry Faculty 22 3 227–235.
IEEE S. Parlak, “Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum robertianum (Loisel.) P.Delforge”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 3, pp. 227–235, 2022, doi: 10.17475/kastorman.1215295.
ISNAD Parlak, Salih. “Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum Robertianum (Loisel.) P.Delforge”. Kastamonu University Journal of Forestry Faculty 22/3 (December 2022), 227-235. https://doi.org/10.17475/kastorman.1215295.
JAMA Parlak S. Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum robertianum (Loisel.) P.Delforge. Kastamonu University Journal of Forestry Faculty. 2022;22:227–235.
MLA Parlak, Salih. “Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum Robertianum (Loisel.) P.Delforge”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 3, 2022, pp. 227-35, doi:10.17475/kastorman.1215295.
Vancouver Parlak S. Effects of Temperature on Asymbiotic Seed Germination of Himantoglossum robertianum (Loisel.) P.Delforge. Kastamonu University Journal of Forestry Faculty. 2022;22(3):227-35.

14178  14179       14165           14166           14167            14168