Araştırma Makalesi
BibTex RIS Kaynak Göster

Topoğrafya ve Meşcere Yapısının Rüzgâr Devriği Zararlarına Etkisinin Araştırılması: Düzce Orman İşletme Müdürlüğü Örneği

Yıl 2023, Cilt: 23 Sayı: 3, 264 - 281, 06.12.2023
https://doi.org/10.17475/kastorman.1394951

Öz

Çalışmanın amacı: Araştırmanın amacı, rüzgâr devrik alanlardaki ağaç hacmi ve hasar düzeyini belirlemek ve topografik faktörlerin ve orman yapısının rüzgâr devriğine olan etkisini değerlendirmekti.
Çalışma alanı: Çalışmamız Düzce Orman İşletme Müdürlüğü sınırları içinde gerçekleştirildi.
Materyal ve yöntem: Düzce Orman İşletme Müdürlüğü sınırları içindeki rüzgâr devrik alanları, olağanüstü verim raporlarından elde edildi. Google Earth kullanılarak doğrulanan rüzgâr devrik verilerine göre her bir hasara ait sınır belirlendi ve ArcMap'e aktarıldı. Rüzgâr devrik alanları ile çevresel parametreler arasındaki ilişkiler, dijital haritalar ve orman amanejman planları kullanılarak belirlendi. Rüzgâr devrik alanları ile topoğrafik ve orman özellikleri arasındaki ilişkiyi tespit etmek için korelasyon analizi uygulandı. Ayrıca, rüzgâr devrik alanları ve miktarları ile hâkim bakı ve orman türleri açısından farklılık olup olmadığını belirlemek için varyans analizi yapıldı. Rüzgâr devrik alanları ve miktarları ile hâkim rüzgâr yönü arasındaki farklılıkları belirlemek için T-testi uygulandı. İstatistiksel olarak anlamlı bulgulara dayanarak, çevresel parametrelere intersect analizi uygulanıp rüzgâr devrik uygunluk haritası oluşturuldu.
Temel Sonuçlar: Rüzgâr devrikleri çoğunlukla güneybatı yönünde, Göknar-Kayın türlerinde ve c-d yaş sınıflarında meydana geldi. Rüzgâr devrik alanı ile ağaç çapı ve yükselti arasında istatistiksel olarak anlamlı bir ilişki (p<0.05) bulundu ve aynı şekilde rüzgâr devrik miktarı ile yükselti ve sit endeksi arasında da anlamlı bir ilişki tespit edildi. Ayrıca, rüzgâr devrik alanında hâkim yön grupları ve tür karışım sınıfları ile anlamlı ilişkiler (p<0.05) bulunmuştur.
Araştırma vurguları: Rüzgâr devriği hasarı dinamik bir süreçtir. Bu süreçte ormanların en az zarar görmesi için topografik ve meşcere özellikleri ile ilişkilerinin belirlenmesi önemlidir. Topografik ve meşcere özellikleri ile rüzgâr devrik alanlarının ilişkilerinin tespit edilmesi, ormanlardaki biyolojik yapıyı korumak ve orman yöneticilerine rehberlik etmek için önemli olacaktır.

Kaynakça

  • Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J., Clarke, H., et al. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2(1), 8.
  • Abuseif, M., Dupre, K. & Michael, R. N. (2022). Trees on buildings: a tree selection framework based on industry best practice. Land, 12(1), 97.
  • Acatay, G. & Gülen, İ. (1971). Windthrow Damages in Turkish Forests. Journal of the Faculty of Forestry Istanbul University.
  • Akbulak, C. & Özdemir, M. (2008). The Application of the visibility analysis for fire observation towers in the Gelibolu Peninsula (NW Turkey) Using GIS. In Proceedings of the Conference on Water Observation and Information System for Decision Support: BALWOIS (Balkan Water Observation and Information System) (Vol. 27, p. 31).
  • Atay, İ. (1987). Natural Rejuvenation Methods I-II. IU Publication No: 3461. Graduate School of Natural and Applied Sciences Publication, (1).
  • Atay, İ. (1990). Silviculture II (Silviculture Technique). İÜ Orman Fakültesi Yayını, (3599/405).
  • Baggio, T., Brožová, N., Bast, A., Bebi, P. & D'Agostino, V. (2022). Novel indices for snow avalanche protection assessment and monitoring of wind-disturbed forests. Ecological Engineering, 181, 106677.
  • Bamwesigye, D., Hlavackova, P., Sujova, A., Fialova, J. & Kupec, P. (2020). Willingness to pay for forest existence value and sustainability. Sustainability, 12(3), 891.
  • Bauhus, J., Forrester, D. I., Gardiner, B., Jactel, H., Vallejo, R., et al. (2017). Ecological stability of mixed-species forests. Mixed-species Forests: Ecology and Management, 337-382.
  • Bouchard, M., Pothier, D. & Ruel, J.C. (2009). Stand-replacing windthrow in the boreal forests of eastern Quebec. Canadian Journal of Forest Research, 39(2), 481-487.
  • Byrne, K. E. & Mitchell, S. J. (2013). Testing of WindFIRM/ForestGALES_BC: a hybrid-mechanistic model for predicting windthrow in partially harvested stands. Forestry, 86(2), 185-199.
  • Constantine, J. A., Schelhaas, M. J., Gabet, E. & Mudd, S. M. (2012). Limits of windthrow-driven hillslope sediment flux due to varying storm frequency and intensity. Geomorphology, 175, 66-73.
  • Cooke, S. J., Galassi, D. M., Gillanders, B. M., Landsman, S. J., Hammerschlag, N., et al. (2022). Consequences of “natural” disasters on aquatic life and habitats. Environmental Reviews, 31(1), 122-140.
  • Cucchi, V., Meredieu, C., Stokes, A., de Coligny, F., Suarez, J., et al. (2005). Modelling the windthrow risk for simulated forest stands of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 213(1-3), 184-196.
  • Çanakcıoğlu, H. (1993). Forest protection. Istanbul University Faculty of Forestry Publication No: 3624/411 ISBN 975-404-199-7 İstanbul, 633 p.
  • Çınar, T., Özdemir, S., & Aydın, A. (2023). Identifying Areas Prone to Windthrow Damage and Generating Susceptibility Maps Utilizing a Novel Vegetation Index Extracted from Sentinel-2A Imagery. Journal of the Indian Society of Remote Sensing, 1-12.
  • Dalponte, M., Marzini, S., Solano-Correa, Y.T., Tonon, G., Vescovo, L., et al. (2020). Mapping forest windthrows using high spatial resolution multispectral satellite images. International Journal of Applied Earth Observation and Geoinformation, 93, 102206.
  • Don, A., Bärwolff, M., Kalbitz, K., Andruschkewitsch, R., Jungkunst, H.F. Et al. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. Forest Ecology and Management, 276, 239-246.
  • Dos Santos, L. T., Magnabosco Marra, D., Trumbore, S., de Camargo, P. B., Negrón-Juárez, R. I., et al. (2016). Windthrows increase soil carbon stocks in a central Amazon forest. Biogeosciences, 13(4), 1299-1308.
  • Dragoi, M. & Barnoaiea, I. (2018). Accounting for windthrow risk in forest management planning: a Romanian tailor-made solution. Forest Systems, 27(3), e018-e018.
  • Einzmann, K., Immitzer, M., Böck, S., Bauer, O., Schmitt, A. et al. (2017). Windthrow detection in European forests with very high-resolution optical data. Forests, 8(1), 21.
  • Engür, M. O. (2006). Occupational Safety in Cleaning Windthrow. Journal of the Faculty of Forestry Istanbul University, 56(2), 53-60.
  • FAO, (1995). Manual on Acute Forest Damage: Managing the Impact of Sudden and Severe Forest Damage. Food And Agriculture Organization,
  • Foster, D. R. & Boose, E. R. (1995). Hurricane disturbance regimes in temperate and tropical forest ecosystems. Wind and Trees, 305-339.
  • Foster, D. R. (1988). Species and stand response to catastrophic wind in central New England, USA. The Journal of Ecology, 135-151.
  • Freitas, T. R., Santos, J. A., Silva, A. P. & Fraga, H. (2023). Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees (Prunus dulcis). Agriculture, 13(7), 1423.
  • Fukui, Y., Miyamoto, T., Tamai, Y., Koizumi, A. & Yajima, T. (2018). Use of DNA sequence data to identify wood-decay fungi likely associated with stem failure caused by windthrow in urban trees during a typhoon. Trees, 32, 1147-1156.
  • Gáfriková, J., Hanajík, P., Vykouková, I., Zvarík, M., Ferianc, P., et al. (2019). Dystric Cambisol properties at windthrow sites with secondary succession developed after 12 years under different conditions in Tatra National Park. Biologia, 74, 1099-1114.
  • García-Casals, X. (2008). Technical and economic analysis on the introduction of a high percentage of renewable energy in the Spanish energy system. In Proceedings of ISES World Congress 2007 (Vol. I–Vol. V) Solar Energy and Human Settlement (pp. 198-203). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • GDM (General Directorate of Meteorology), 2022. Meteorological data. General Directorate of Meteorology, Kalaba, Ankara, Türkiye.
  • Gross, G. (2018). A windthrow model for urban trees with application to storm" Xavier". Meteorologische Zeitschrift 27 (2018), Nr. 4, 27(4), 299-308.
  • Hanajík, P., Gáfriková, J. & Zvarík, M. (2017). Dehydrogenase activity in topsoil at windthrow plots in Tatra National Park. Central European Forestry Journal, 63(2-3), 91-96.
  • Harris, A. S. (1989). Wind in the forests of southeast Alaska and guides for reducing damage (Vol. 244). US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Hartmann, A., Kobler, J., Kralik, M., Dirnböck, T., Humer, F., et al. (2015). Model aided quantification of dissolved carbon and nitrogen release after windthrow disturbance in an Austrian karst system. Biogeosciences Discussions, 12(14).
  • Ivanova, N. & Shashkov, M. (2022). Tree stand assessment before and after windthrow based on open-access biodiversity data and aerial photography. Nat. Conserv. Res, 7(1), 52-63.
  • Jack, S. L., Hoffman, M. T., Rohde, R. F., Durbach, I. & Archibald, M. (2014). Blow me down: A new perspective on Aloe dichotoma mortality from windthrow. BMC Ecology, 14(1), 1-13.
  • Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., et al. (2017). Tree diversity drives forest stand resistance to natural disturbances. Current Forestry Reports, 3, 223-243.
  • Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., et al. (2017). Tree diversity drives forest stand resistance to natural disturbances. Current Forestry Reports, 3, 223-243.
  • Jandl, R., Borsdorf, A., Miegroet Van, H., Lackner, R. & Psenner, R. (2009). Global Change and Sustainable Development in Mountain Regions–Proceedings of the COST Strategic Workshop (p. 160).
  • Jeon, M., Lee, K. & Choung, Y. (2015). Gap formation and susceptible Abies trees to windthrow in the forests of Odaesan National Park. Journal of Ecology and Environment, 38(2), 175-183.
  • Jull, M. (2001). Wind damage and related risk factors for interior douglas-fir leave trees in central BC. In Proceedings of the Windthrow Researchers Workshop (Vol. 31, pp. 12-18).
  • Klaus, M., Holsten, A., Hostert, P. & Kropp, J. P. (2011). Integrated methodology to assess windthrow impacts on forest stands under climate change. Forest Ecology and Management, 261(11), 1799-1810.
  • Kooch, Y., Hosseini, S. M., Samonil, P. & Hojjati, S. M. (2014). The effect of windthrow disturbances on biochemical and chemical soil properties in the northern mountainous forests of Iran. Catena, 116, 142-148.
  • Kramer, M. G., Hansen, A. J., Taper, M. L. & Kissinger, E. J. (2001). Abiotic controls on long‐term windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology, 82(10), 2749-2768.
  • Lanquaye, C.O. (2003). Empirical modelling of windthrow risk and hazard mapping using Geographic Information Systems (Doctoral Dissertation, University of British Columbia).
  • Lanquaye-Opoku, N. & Mitchell, S. J. (2005). Portability of stand-level empirical windthrow risk models. Forest Ecology and Management, 216(1-3), 134-148.
  • Lavoie, S., Ruel, J. C., Bergeron, Y. & Harvey, B. D. (2012). Windthrow after group and dispersed tree retention in eastern Canada. Forest Ecology and Management, 269, 158-167.
  • Matiu, M., Bothmann, L., Steinbrecher, R. & Menzel, A. (2017). Monitoring succession after a non-cleared windthrow in a Norway spruce mountain forest using webcam, satellite vegetation indices and turbulent CO2 exchange. Agricultural and Forest Meteorology, 244, 72-81.
  • Mayer, H. (1989). Windthrow. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 324(1223), 267-281.
  • Mayer, M., Matthews, B., Schindlbacher, A., & Katzensteiner, K. (2014). Soil CO 2 efflux from mountainous windthrow areas: dynamics over 12 years post-disturbance. Biogeosciences, 11(21), 6081-6093.
  • Meng, J., Bai, Y., Zeng, W. & Ma, W. (2017). A management tool for reducing the potential risk of windthrow for coastal Casuarina equisetifolia L. stands on Hainan Island, China. European Journal of Forest Research, 136, 543-554.
  • Mitchell, S. J. & Ruel, J. C. (2015). Modeling windthrow at stand and landscape scales. Simulation Modeling of Forest Landscape Disturbances, 17-43.
  • Mitchell, S. J. (2000). Stem growth responses in Douglas-fir and Sitka spruce following thinning: implications for assessing wind-firmness. Forest Ecology and Management, 135(1-3), 105-114.
  • Moore, J. R. (2000). Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. Forest Ecology and Management, 135(1-3), 63-71.
  • Negrón-Juárez, R. I., Jenkins, H. S., Raupp, C. F., Riley, W. J., Kueppers, L. M., et al. (2017). Windthrow variability in central Amazonia. Atmosphere, 8(2), 28.
  • Paluš, H., Parobek, J., Šulek, R., Lichý, J. & Šálka, J. (2018). Understanding sustainable forest management certification in Slovakia: Forest Owners’ perception of expectations, benefits and problems. Sustainability, 10(7), 2470.
  • Peterson, C. J. & Pickett, S. T. (2000). Patch type influences on regeneration in a western Pennsylvania, USA, catastrophic windthrow. Oikos, 90(3), 489-500.
  • Peterson, C. J., & Leach, A. D. (2008). Limited salvage logging effects on forest regeneration after moderate‐severity windthrow. Ecological Applications, 18(2), 407-420.
  • Quine, C. P. (1995). Assessing the risk of wind damage to forests: practice and pitfalls. Wind and Trees. Cambridge University Press, Cambridge, 379-403.
  • Ruel, J. C., Pin, D. & Cooper, K. (2001). Windthrow in riparian buffer strips: effect of wind exposure, thinning and strip width. Forest Ecology and Management, 143(1-3), 105-113.
  • Šamonil, P., Šebková, B., Douda, J. & Vrška, T. (2008). Role of position within the windthrow in forest floor chemistry in the flysch zone of the Carpathians. Canadian Journal of Forest Research, 38(6), 1646-1660.
  • Schmoeckel, J. & Kottmeier, C. (2008). Storm damage in the Black Forest caused by the winter storm “Lothar” – Part 1: Airborne damage assessment”. Hazards Earth Systems Science, 8, 795-803.
  • Schmoeckel, J., Kottmeier, C., Aldinger, E. & Seemann, D. (2003). Windstorm „Lothar Orographic Influences on Storm Damage in the Black Forest. In Wind Effects on Trees. Proceedings of the international Conference, Karlsruhe (Vol. 16, p. 18).
  • Schütz, J. P., Götz, M., Schmid, W. & Mandallaz, D. (2006). Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. European Journal of Forest Research, 125, 291-302.
  • Scott, R. E. & Mitchell, S. J. (2005). Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. Forest Ecology and Management, 218(1-3), 193-209.
  • Senf, C. & Seidl, R. (2021). Storm and fire disturbances in Europe: Distribution and trends. Global Change Biology, 27(15), 3605-3619.
  • Skłodowski, J. (2020). Survival of carabids after windthrow of pine forest depends on the presence of broken tree crowns. Scandinavian Journal of Forest Research, 35(1-2), 10-19.
  • Skłodowski, J. (2023). Leaving windthrown stands unsalvaged as a management practice for facilitating late-successional carabid assemblages. European Journal of Forest Research, 142(2), 427-442.
  • Steil, J. C., Blinn, C. R. & Kolka, R. (2009). Foresters' perceptions of windthrow dynamics in northern Minnesota riparian management zones. Northern Journal of Applied Forestry, 26(2), 76-82.
  • Taylor, A. R., Dracup, E., MacLean, D. A., Boulanger, Y. & Endicott, S. (2019). Forest structure more important than topography in determining windthrow during Hurricane Juan in Canada’s Acadian Forest. Forest Ecology and Management, 434, 255-263.
  • Thürig, E., Palosuo, T., Bucher, J. & Kaufmann, E. (2005). The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. Forest Ecology and Management, 210(1-3), 337-350.
  • Torun, P. & Altunel, A. O. (2020). Effects of environmental factors and forest management on landscape-scale forest storm damage in Turkey. Annals of Forest Science, 77(2), 39.
  • Torun, P. (2018). Modeling wind damage in the forests of Kastamonu using the maximum entropy method. Master's Thesis, Kastamonu University, Institute of Natural Sciences. 112 p. Kastamonu.
  • Vašutová, M., Edwards-Jonášová, M., Veselá, P., Effenberková, L., Fleischer, P., et al. (2018). Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. Mycorrhiza, 28, 221-233.
  • Ver Planck, N. R. & MacFarlane, D. W. (2019). Branch mass allocation increases wind throw risk for Fagus grandifolia. Forestry: An International Journal of Forest Research, 92(4), 490-499.
  • Vodde, F., Jogiste, K., Gruson, L., Ilisson, T., Köster, K., et al. (2010). Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species. Journal of Forest Research, 15(1), 55-64.
  • Wilkie, M.L., Holmgren, P. Castaneda, F. (2003). Sustainable forest management and the ecosystem approach. Two concepts, one goal. Food and Agriculture Organization, Forest Resources Development Service, Rome.
  • Wohlgemuth, T., Schwitter, R., Bebi, P., Sutter, F., & Brang, P. (2017). Post-windthrow management in protection forests of the Swiss Alps. European Journal of Forest Research, 136, 1029-1040.
  • Yavuzşefik, Y. & Çetin, B. (2002). Harmful effects of wind in Düzce province,” II. National Black Sea Congress, Artvin, Turkey, 2002.
  • Zhang, B., Perrie, W. & He, Y. (2011). Wind speed retrieval from RADARSAT‐2 quad‐polarization images using a new polarization ratio model. Journal of Geophysical Research: Oceans, 116(C8).
  • Zhao, G., Mu, X., Wen, Z., Wang, F. & Gao, P. (2013). Soil erosion, conservation, and eco‐environment changes in the Loess Plateau of China. Land Degradation & Development, 24(5), 499-510.

Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye

Yıl 2023, Cilt: 23 Sayı: 3, 264 - 281, 06.12.2023
https://doi.org/10.17475/kastorman.1394951

Öz

Aim of study: The aim of the study was to determined the tree volume and damage level in windthrow areas and to assess the impact of topographic factors and forest structure on windthrow damaged.
Area of study: Our study was conducted within the Düzce Forest Management Directorate.
Material and methods: The windthrow areas within the boundaries of Düzce Forest Management Directorate were obtained from extraordinary yield reports. According to windthrow data verified using Google Earth, the borders for each damage were determined and transferred to ArcMap. The relationships between windthrow areas and enviromental parameters were determined using digital maps and forest management plans. Correlation analysis was applied to find out the relationship between windthrow areas and topographic and forest characteristics. Additionally, variance analysis was performed to determine if there were differences in terms of dominant aspects and forest types between windthrow areas and amounts. T-tests were conducted to determine if there were differences between windthrow areas and amounts and the dominant wind direction. Based on the statistically significant results, an intersect analysis was applied to environmental parameters to generate a windthrow susceptibility map.
Main results: Windthrow occurred mostly in the southwest aspect, in the Fir-Beech species and in the cd age classes. A statistically significant relationship (p<0.05) was found between windthrow area and tree diameter and elevation, and also between windthrow amount and elevation and site index. Moreover, significant relationships (p<0.05) were found in dominant aspect groups and species mix classes in with windthrow area.
Research highlights: Windthrow damage is a dynamic process, and it is important to determine its relationships with topographic and stand characteristics in order to minimize damage to forests. Understanding the relationships between topographic and stand characteristics and windthrow areas can help preserve the biological structure of forests and provide guidance to forest managers.

Kaynakça

  • Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J., Clarke, H., et al. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2(1), 8.
  • Abuseif, M., Dupre, K. & Michael, R. N. (2022). Trees on buildings: a tree selection framework based on industry best practice. Land, 12(1), 97.
  • Acatay, G. & Gülen, İ. (1971). Windthrow Damages in Turkish Forests. Journal of the Faculty of Forestry Istanbul University.
  • Akbulak, C. & Özdemir, M. (2008). The Application of the visibility analysis for fire observation towers in the Gelibolu Peninsula (NW Turkey) Using GIS. In Proceedings of the Conference on Water Observation and Information System for Decision Support: BALWOIS (Balkan Water Observation and Information System) (Vol. 27, p. 31).
  • Atay, İ. (1987). Natural Rejuvenation Methods I-II. IU Publication No: 3461. Graduate School of Natural and Applied Sciences Publication, (1).
  • Atay, İ. (1990). Silviculture II (Silviculture Technique). İÜ Orman Fakültesi Yayını, (3599/405).
  • Baggio, T., Brožová, N., Bast, A., Bebi, P. & D'Agostino, V. (2022). Novel indices for snow avalanche protection assessment and monitoring of wind-disturbed forests. Ecological Engineering, 181, 106677.
  • Bamwesigye, D., Hlavackova, P., Sujova, A., Fialova, J. & Kupec, P. (2020). Willingness to pay for forest existence value and sustainability. Sustainability, 12(3), 891.
  • Bauhus, J., Forrester, D. I., Gardiner, B., Jactel, H., Vallejo, R., et al. (2017). Ecological stability of mixed-species forests. Mixed-species Forests: Ecology and Management, 337-382.
  • Bouchard, M., Pothier, D. & Ruel, J.C. (2009). Stand-replacing windthrow in the boreal forests of eastern Quebec. Canadian Journal of Forest Research, 39(2), 481-487.
  • Byrne, K. E. & Mitchell, S. J. (2013). Testing of WindFIRM/ForestGALES_BC: a hybrid-mechanistic model for predicting windthrow in partially harvested stands. Forestry, 86(2), 185-199.
  • Constantine, J. A., Schelhaas, M. J., Gabet, E. & Mudd, S. M. (2012). Limits of windthrow-driven hillslope sediment flux due to varying storm frequency and intensity. Geomorphology, 175, 66-73.
  • Cooke, S. J., Galassi, D. M., Gillanders, B. M., Landsman, S. J., Hammerschlag, N., et al. (2022). Consequences of “natural” disasters on aquatic life and habitats. Environmental Reviews, 31(1), 122-140.
  • Cucchi, V., Meredieu, C., Stokes, A., de Coligny, F., Suarez, J., et al. (2005). Modelling the windthrow risk for simulated forest stands of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 213(1-3), 184-196.
  • Çanakcıoğlu, H. (1993). Forest protection. Istanbul University Faculty of Forestry Publication No: 3624/411 ISBN 975-404-199-7 İstanbul, 633 p.
  • Çınar, T., Özdemir, S., & Aydın, A. (2023). Identifying Areas Prone to Windthrow Damage and Generating Susceptibility Maps Utilizing a Novel Vegetation Index Extracted from Sentinel-2A Imagery. Journal of the Indian Society of Remote Sensing, 1-12.
  • Dalponte, M., Marzini, S., Solano-Correa, Y.T., Tonon, G., Vescovo, L., et al. (2020). Mapping forest windthrows using high spatial resolution multispectral satellite images. International Journal of Applied Earth Observation and Geoinformation, 93, 102206.
  • Don, A., Bärwolff, M., Kalbitz, K., Andruschkewitsch, R., Jungkunst, H.F. Et al. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. Forest Ecology and Management, 276, 239-246.
  • Dos Santos, L. T., Magnabosco Marra, D., Trumbore, S., de Camargo, P. B., Negrón-Juárez, R. I., et al. (2016). Windthrows increase soil carbon stocks in a central Amazon forest. Biogeosciences, 13(4), 1299-1308.
  • Dragoi, M. & Barnoaiea, I. (2018). Accounting for windthrow risk in forest management planning: a Romanian tailor-made solution. Forest Systems, 27(3), e018-e018.
  • Einzmann, K., Immitzer, M., Böck, S., Bauer, O., Schmitt, A. et al. (2017). Windthrow detection in European forests with very high-resolution optical data. Forests, 8(1), 21.
  • Engür, M. O. (2006). Occupational Safety in Cleaning Windthrow. Journal of the Faculty of Forestry Istanbul University, 56(2), 53-60.
  • FAO, (1995). Manual on Acute Forest Damage: Managing the Impact of Sudden and Severe Forest Damage. Food And Agriculture Organization,
  • Foster, D. R. & Boose, E. R. (1995). Hurricane disturbance regimes in temperate and tropical forest ecosystems. Wind and Trees, 305-339.
  • Foster, D. R. (1988). Species and stand response to catastrophic wind in central New England, USA. The Journal of Ecology, 135-151.
  • Freitas, T. R., Santos, J. A., Silva, A. P. & Fraga, H. (2023). Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees (Prunus dulcis). Agriculture, 13(7), 1423.
  • Fukui, Y., Miyamoto, T., Tamai, Y., Koizumi, A. & Yajima, T. (2018). Use of DNA sequence data to identify wood-decay fungi likely associated with stem failure caused by windthrow in urban trees during a typhoon. Trees, 32, 1147-1156.
  • Gáfriková, J., Hanajík, P., Vykouková, I., Zvarík, M., Ferianc, P., et al. (2019). Dystric Cambisol properties at windthrow sites with secondary succession developed after 12 years under different conditions in Tatra National Park. Biologia, 74, 1099-1114.
  • García-Casals, X. (2008). Technical and economic analysis on the introduction of a high percentage of renewable energy in the Spanish energy system. In Proceedings of ISES World Congress 2007 (Vol. I–Vol. V) Solar Energy and Human Settlement (pp. 198-203). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • GDM (General Directorate of Meteorology), 2022. Meteorological data. General Directorate of Meteorology, Kalaba, Ankara, Türkiye.
  • Gross, G. (2018). A windthrow model for urban trees with application to storm" Xavier". Meteorologische Zeitschrift 27 (2018), Nr. 4, 27(4), 299-308.
  • Hanajík, P., Gáfriková, J. & Zvarík, M. (2017). Dehydrogenase activity in topsoil at windthrow plots in Tatra National Park. Central European Forestry Journal, 63(2-3), 91-96.
  • Harris, A. S. (1989). Wind in the forests of southeast Alaska and guides for reducing damage (Vol. 244). US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Hartmann, A., Kobler, J., Kralik, M., Dirnböck, T., Humer, F., et al. (2015). Model aided quantification of dissolved carbon and nitrogen release after windthrow disturbance in an Austrian karst system. Biogeosciences Discussions, 12(14).
  • Ivanova, N. & Shashkov, M. (2022). Tree stand assessment before and after windthrow based on open-access biodiversity data and aerial photography. Nat. Conserv. Res, 7(1), 52-63.
  • Jack, S. L., Hoffman, M. T., Rohde, R. F., Durbach, I. & Archibald, M. (2014). Blow me down: A new perspective on Aloe dichotoma mortality from windthrow. BMC Ecology, 14(1), 1-13.
  • Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., et al. (2017). Tree diversity drives forest stand resistance to natural disturbances. Current Forestry Reports, 3, 223-243.
  • Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., et al. (2017). Tree diversity drives forest stand resistance to natural disturbances. Current Forestry Reports, 3, 223-243.
  • Jandl, R., Borsdorf, A., Miegroet Van, H., Lackner, R. & Psenner, R. (2009). Global Change and Sustainable Development in Mountain Regions–Proceedings of the COST Strategic Workshop (p. 160).
  • Jeon, M., Lee, K. & Choung, Y. (2015). Gap formation and susceptible Abies trees to windthrow in the forests of Odaesan National Park. Journal of Ecology and Environment, 38(2), 175-183.
  • Jull, M. (2001). Wind damage and related risk factors for interior douglas-fir leave trees in central BC. In Proceedings of the Windthrow Researchers Workshop (Vol. 31, pp. 12-18).
  • Klaus, M., Holsten, A., Hostert, P. & Kropp, J. P. (2011). Integrated methodology to assess windthrow impacts on forest stands under climate change. Forest Ecology and Management, 261(11), 1799-1810.
  • Kooch, Y., Hosseini, S. M., Samonil, P. & Hojjati, S. M. (2014). The effect of windthrow disturbances on biochemical and chemical soil properties in the northern mountainous forests of Iran. Catena, 116, 142-148.
  • Kramer, M. G., Hansen, A. J., Taper, M. L. & Kissinger, E. J. (2001). Abiotic controls on long‐term windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology, 82(10), 2749-2768.
  • Lanquaye, C.O. (2003). Empirical modelling of windthrow risk and hazard mapping using Geographic Information Systems (Doctoral Dissertation, University of British Columbia).
  • Lanquaye-Opoku, N. & Mitchell, S. J. (2005). Portability of stand-level empirical windthrow risk models. Forest Ecology and Management, 216(1-3), 134-148.
  • Lavoie, S., Ruel, J. C., Bergeron, Y. & Harvey, B. D. (2012). Windthrow after group and dispersed tree retention in eastern Canada. Forest Ecology and Management, 269, 158-167.
  • Matiu, M., Bothmann, L., Steinbrecher, R. & Menzel, A. (2017). Monitoring succession after a non-cleared windthrow in a Norway spruce mountain forest using webcam, satellite vegetation indices and turbulent CO2 exchange. Agricultural and Forest Meteorology, 244, 72-81.
  • Mayer, H. (1989). Windthrow. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 324(1223), 267-281.
  • Mayer, M., Matthews, B., Schindlbacher, A., & Katzensteiner, K. (2014). Soil CO 2 efflux from mountainous windthrow areas: dynamics over 12 years post-disturbance. Biogeosciences, 11(21), 6081-6093.
  • Meng, J., Bai, Y., Zeng, W. & Ma, W. (2017). A management tool for reducing the potential risk of windthrow for coastal Casuarina equisetifolia L. stands on Hainan Island, China. European Journal of Forest Research, 136, 543-554.
  • Mitchell, S. J. & Ruel, J. C. (2015). Modeling windthrow at stand and landscape scales. Simulation Modeling of Forest Landscape Disturbances, 17-43.
  • Mitchell, S. J. (2000). Stem growth responses in Douglas-fir and Sitka spruce following thinning: implications for assessing wind-firmness. Forest Ecology and Management, 135(1-3), 105-114.
  • Moore, J. R. (2000). Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. Forest Ecology and Management, 135(1-3), 63-71.
  • Negrón-Juárez, R. I., Jenkins, H. S., Raupp, C. F., Riley, W. J., Kueppers, L. M., et al. (2017). Windthrow variability in central Amazonia. Atmosphere, 8(2), 28.
  • Paluš, H., Parobek, J., Šulek, R., Lichý, J. & Šálka, J. (2018). Understanding sustainable forest management certification in Slovakia: Forest Owners’ perception of expectations, benefits and problems. Sustainability, 10(7), 2470.
  • Peterson, C. J. & Pickett, S. T. (2000). Patch type influences on regeneration in a western Pennsylvania, USA, catastrophic windthrow. Oikos, 90(3), 489-500.
  • Peterson, C. J., & Leach, A. D. (2008). Limited salvage logging effects on forest regeneration after moderate‐severity windthrow. Ecological Applications, 18(2), 407-420.
  • Quine, C. P. (1995). Assessing the risk of wind damage to forests: practice and pitfalls. Wind and Trees. Cambridge University Press, Cambridge, 379-403.
  • Ruel, J. C., Pin, D. & Cooper, K. (2001). Windthrow in riparian buffer strips: effect of wind exposure, thinning and strip width. Forest Ecology and Management, 143(1-3), 105-113.
  • Šamonil, P., Šebková, B., Douda, J. & Vrška, T. (2008). Role of position within the windthrow in forest floor chemistry in the flysch zone of the Carpathians. Canadian Journal of Forest Research, 38(6), 1646-1660.
  • Schmoeckel, J. & Kottmeier, C. (2008). Storm damage in the Black Forest caused by the winter storm “Lothar” – Part 1: Airborne damage assessment”. Hazards Earth Systems Science, 8, 795-803.
  • Schmoeckel, J., Kottmeier, C., Aldinger, E. & Seemann, D. (2003). Windstorm „Lothar Orographic Influences on Storm Damage in the Black Forest. In Wind Effects on Trees. Proceedings of the international Conference, Karlsruhe (Vol. 16, p. 18).
  • Schütz, J. P., Götz, M., Schmid, W. & Mandallaz, D. (2006). Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. European Journal of Forest Research, 125, 291-302.
  • Scott, R. E. & Mitchell, S. J. (2005). Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. Forest Ecology and Management, 218(1-3), 193-209.
  • Senf, C. & Seidl, R. (2021). Storm and fire disturbances in Europe: Distribution and trends. Global Change Biology, 27(15), 3605-3619.
  • Skłodowski, J. (2020). Survival of carabids after windthrow of pine forest depends on the presence of broken tree crowns. Scandinavian Journal of Forest Research, 35(1-2), 10-19.
  • Skłodowski, J. (2023). Leaving windthrown stands unsalvaged as a management practice for facilitating late-successional carabid assemblages. European Journal of Forest Research, 142(2), 427-442.
  • Steil, J. C., Blinn, C. R. & Kolka, R. (2009). Foresters' perceptions of windthrow dynamics in northern Minnesota riparian management zones. Northern Journal of Applied Forestry, 26(2), 76-82.
  • Taylor, A. R., Dracup, E., MacLean, D. A., Boulanger, Y. & Endicott, S. (2019). Forest structure more important than topography in determining windthrow during Hurricane Juan in Canada’s Acadian Forest. Forest Ecology and Management, 434, 255-263.
  • Thürig, E., Palosuo, T., Bucher, J. & Kaufmann, E. (2005). The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. Forest Ecology and Management, 210(1-3), 337-350.
  • Torun, P. & Altunel, A. O. (2020). Effects of environmental factors and forest management on landscape-scale forest storm damage in Turkey. Annals of Forest Science, 77(2), 39.
  • Torun, P. (2018). Modeling wind damage in the forests of Kastamonu using the maximum entropy method. Master's Thesis, Kastamonu University, Institute of Natural Sciences. 112 p. Kastamonu.
  • Vašutová, M., Edwards-Jonášová, M., Veselá, P., Effenberková, L., Fleischer, P., et al. (2018). Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. Mycorrhiza, 28, 221-233.
  • Ver Planck, N. R. & MacFarlane, D. W. (2019). Branch mass allocation increases wind throw risk for Fagus grandifolia. Forestry: An International Journal of Forest Research, 92(4), 490-499.
  • Vodde, F., Jogiste, K., Gruson, L., Ilisson, T., Köster, K., et al. (2010). Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species. Journal of Forest Research, 15(1), 55-64.
  • Wilkie, M.L., Holmgren, P. Castaneda, F. (2003). Sustainable forest management and the ecosystem approach. Two concepts, one goal. Food and Agriculture Organization, Forest Resources Development Service, Rome.
  • Wohlgemuth, T., Schwitter, R., Bebi, P., Sutter, F., & Brang, P. (2017). Post-windthrow management in protection forests of the Swiss Alps. European Journal of Forest Research, 136, 1029-1040.
  • Yavuzşefik, Y. & Çetin, B. (2002). Harmful effects of wind in Düzce province,” II. National Black Sea Congress, Artvin, Turkey, 2002.
  • Zhang, B., Perrie, W. & He, Y. (2011). Wind speed retrieval from RADARSAT‐2 quad‐polarization images using a new polarization ratio model. Journal of Geophysical Research: Oceans, 116(C8).
  • Zhao, G., Mu, X., Wen, Z., Wang, F. & Gao, P. (2013). Soil erosion, conservation, and eco‐environment changes in the Loess Plateau of China. Land Degradation & Development, 24(5), 499-510.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ormancılık (Diğer)
Bölüm Makaleler
Yazarlar

Yılmaz Türk

Hamza Çalışkan

Tunahan Çınar

Abdurrahim Aydın

Erken Görünüm Tarihi 1 Aralık 2023
Yayımlanma Tarihi 6 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 3

Kaynak Göster

APA Türk, Y., Çalışkan, H., Çınar, T., Aydın, A. (2023). Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye. Kastamonu University Journal of Forestry Faculty, 23(3), 264-281. https://doi.org/10.17475/kastorman.1394951
AMA Türk Y, Çalışkan H, Çınar T, Aydın A. Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye. Kastamonu University Journal of Forestry Faculty. Aralık 2023;23(3):264-281. doi:10.17475/kastorman.1394951
Chicago Türk, Yılmaz, Hamza Çalışkan, Tunahan Çınar, ve Abdurrahim Aydın. “Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye”. Kastamonu University Journal of Forestry Faculty 23, sy. 3 (Aralık 2023): 264-81. https://doi.org/10.17475/kastorman.1394951.
EndNote Türk Y, Çalışkan H, Çınar T, Aydın A (01 Aralık 2023) Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye. Kastamonu University Journal of Forestry Faculty 23 3 264–281.
IEEE Y. Türk, H. Çalışkan, T. Çınar, ve A. Aydın, “Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye”, Kastamonu University Journal of Forestry Faculty, c. 23, sy. 3, ss. 264–281, 2023, doi: 10.17475/kastorman.1394951.
ISNAD Türk, Yılmaz vd. “Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye”. Kastamonu University Journal of Forestry Faculty 23/3 (Aralık 2023), 264-281. https://doi.org/10.17475/kastorman.1394951.
JAMA Türk Y, Çalışkan H, Çınar T, Aydın A. Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye. Kastamonu University Journal of Forestry Faculty. 2023;23:264–281.
MLA Türk, Yılmaz vd. “Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye”. Kastamonu University Journal of Forestry Faculty, c. 23, sy. 3, 2023, ss. 264-81, doi:10.17475/kastorman.1394951.
Vancouver Türk Y, Çalışkan H, Çınar T, Aydın A. Investigation of the Effect of Topography and Stand Structure on Windthrow Damages: A Case Study from Düzce, Türkiye. Kastamonu University Journal of Forestry Faculty. 2023;23(3):264-81.

14178  14179       14165           14166           14167            14168