Araştırma Makalesi
BibTex RIS Kaynak Göster

ESTIMATING OF HOUSEHOLDS SHOPPING ON THE INTERNET USING RANDOM FOREST METHOD

Yıl 2021, Cilt: 12 Sayı: 24, 728 - 752, 21.12.2021
https://doi.org/10.36543/kauiibfd.2021.030

Öz

The aim of the study is to determine the households shopping online in Turkey. During the modeling phase, the Random Forest method, which is frequently preferred in classification problems, was used. The data set in the TÜİK 2019 Household Budget Survey and gathered from 11521 households was used. The data set of the study was balanced with SMOTE and Random Undersampling methods. The cross-validation method was used to increase the accuracy of the study. The performances of the established models were compared and interpreted, and it was shown that the classifier performance could be increased with the correct use of sampling methods and cross-validation. In the training dataset, the model established by applying the SMOTE method was found to be more successful than the results of all criteria (F, DP, G-Means and MCC ) compared to other models. In the test data set, while it was observed that the model with the SMOTE method was more successful than the results of the F and MCC criteria, the model established with the Undersampling method was more successful according to the result of the G-Means criterion, and the model created without using any method was found to be successful according to the result of the DP criterion.

Kaynakça

  • Akhter, S. H. (2003). Digital divide and purchase intention: why demographic psychology matters. Journal of Economic Psychology, 24(3), 321-327.
  • Akhter, S. H. (2012). Who spends more online? The influence of time, usage variety, and privacy concern on online spending. Journal of Retailing and Consumer Services, 19(1), 109-115.
  • Akın, P., & Terzi, Y. (2020). Dengesiz veri setli sağkalım verilerinde cox regresyon ve rastgele orman yöntemlerin karşılaştırılması. Veri Bilimi, 3(1), 21-25.
  • Akosa JS. (2017). Predictive Accuracy: A misleading performance measure for highly imbalanced data. In: Proceedings of The SAS Global Forum 2017 Conference. Cary, North Carolina: SAS Institute Inc.; 2017. p. 942–2017.
  • Al-Maghrabi, T., Dennis, C., Halliday, S. V., & BinAli, A. (2011). Determinants of Customer Continuance Intention of Online Shopping. International Journal of Business Science & Applied Management (IJBSAM), 6(1), 41-66.
  • Alam, M. S., & Vuong, S. T. (2013). Random forest classification for detecting android malware. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 663-669). IEEE.
  • Arafat, M. Y., Hoque, S., & Farid, D. M. (2017). Cluster-Based under-sampling with random forest for multi-class ımbalanced classification. In 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA) (pp. 1-6). IEEE.
  • Armağan, E. A., & Turan, A. (2014). Internet üzerinden alışveriş: demografik faktörlerin, bireysel ihtiyaçların etkisi üzerine ampirik bir değerlendirme. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 28(3), 1-22.
  • Aydilek, İ. B. (2018). Yazılım hata tahmininde kullanılan metriklerin karar ağaçlarındaki bilgi kazançlarının incelenmesi ve iyileştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(5), 906-914.
  • Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models assessment over imbalanced data sets. Journal of Information Engineering and Applications, 3(10). 27-39.
  • Bhatti, A., & Akram, H. (2020). The moderating role of subjective norms between online shopping behaviour and its determinants. International Journal of Social Sciences and Economic Review, 2(1), 1-9.
  • Bhatti, A., Akram, H., Basit, H. M., Khan, A. U., Raza, S. M., & Naqvi, M. B. (2020). E-Commerce trends during Covid-19 pandemic. International Journal of Future Generation Communication and Networking, 13(2), 1449-1452.
  • Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.
  • Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal classifier for imbalanced data using matthews correlation coefficient metric. PloS one, 12(6), 1-17.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
  • Brown, J. B. (2018). Classifiers and their metrics quantified. Molecular Informatics, 37, 1-11.
  • Buyrukoğlu, S. (2021). Early detection of alzheimer’s disease using data mining: comparision of ensemble feature selection approaches. Konya Mühendislik Bilimleri Dergisi, 9(1), 50-61.
  • Cengiz E., & Şekerkaya A. (2010), İnternet kullanıcılarının internetten alış-verişe yönelik satın alma karar süreçlerinin incelenmesi ve kullanım yoğunlukları açısından sınıflandırılması üzerine bir araştırma, Öneri Dergisi, 9 (33), 33-49.
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
  • Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTEBoost: Improving prediction of the minority class in boosting. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 107-119). Springer, Berlin, Heidelberg.
  • Chen, S., He, H., & Garcia, E. A. (2010). RAMOBoost: ranked minority oversampling in boosting. IEEE Transactions on Neural Networks, 21(10), 1624-1642.
  • Chicco, D., & Jurman, G. (2020). The advantages of the matthews correlation coefficient (mcc) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21(1), 1-13.
  • Çiçek, R., & Mürütsoy, M. (2014). İnternet tüketicisinin satın alma davranışlarının incelenmesi üzerine bir araştırma. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 15(2), 291-305.
  • Daş, B., Türkoğlu, İ., DNA dizilimlerinin sınıflandırılmasında karar ağacı algoritmalarının karşılaştırılması, Elektrik – Elektronik - Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu (ELECO 2014), s.381-383, 27-29 Kasım 2014, Bursa.
  • Ding, Z. (2011). Diversified ensemble classifiers for highly imbalanced data learning and its application in bioinformatics (Doctoral dissertation, Georgia State University).
  • Dogru, N., & Subasi, A. (2018). Traffic accident detection using random forest classifier. In 2018 15th Learning and Technology Conference (L&T) (pp. 40-45). IEEE.
  • Doğrul, Ü. (2012). Elektronik alışveriş davranışında faydacı ve hedonik güdülerin etkisi. Sosyal ve Beşeri Bilimler Dergisi, 4(1), 321-331.
  • Du, P., Samat, A., Waske, B., Liu, S., & Li, Z. (2015). Random forest and rotation forest for fully polarized sar image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 38-53.
  • Ecer, O., Yetgin, Z., & Celik, T. (2018). Air write letter recognition using random forest classification on arduino dataset. International Journal of Scientific and Technological Research, 4(7), 1-9.
  • Ekelik, H., & ALTAŞ, D. (2019). Dijital reklam verilerinden yararlanarak potansiyel konut alıcılarının rastgele orman yöntemiyle sınıflandırılması. Journal Of Research İn Economics, 3(1), 28-45.
  • Ertürk, R., & Aktepe, C. (2020). Sosyal medyanın tüketicilerin satınalma davranışları üzerinde etkisi: Türkiye ve İran’daki üniversite öğrencileri üzerine bir uygulama. İşletme Araştırmaları Dergisi, 12(4), 4289-4304.
  • EUROSTAT (2021). Internet purchases by individuals (until 2019), 04 Temmuz 2021 tarihinde https://ec.europa.eu/eurostat/databrowser/view/isoc_ec_ibuy/default/table?lang=en. adresinden erişildi.
  • Farnaaz, N., & Jabbar, M. A. (2016). Random forest modeling for network intrusion detection system. Procedia Computer Science, 89, 213-217.
  • Ghimire, B., Rogan, J., & Miller, J. (2010). Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the getis statistic. Remote Sensing Letters, 1(1), 45-54.
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2004, September). Random forest classification of multisource remote sensing and geographic data. In IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, pp. 1049-1052). IEEE.
  • Goldsmith, R. E., & Flynn, L. R. (2005). Bricks, clicks, and pix: apparel buyers' use of stores, internet, and catalogs compared. International Journal of Retail & Distribution Management, 33(4).
  • Göktaş, M. E., & Yağanoğlu, M. (2020). Veri bilimi uygulamalarının hastalık teşhisinde kullanılması: kalp krizi örneği. Journal of Information Systems and Management Research, 2(2), 26-32.
  • Grashuis, J., Skevas, T., & Segovia, M. S. (2020). Grocery shopping preferences during the Covid-19 pandemic. Sustainability, 12(13), 1-10.
  • Gültaş, P., & Yıldırım, Y. (2016). İnternetten alışverişte tüketici davranışını etkileyen demografik faktörler. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 6(10), 32-51.
  • Güven, H. (2020). Covid-19 pandemik krizi sürecinde e-ticarette meydana gelen değişimler. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 7(5), 251-268.
  • Hacıalioğlu, A., & Sağlam, M. (2021). Covid-19 pandemi sürecinde tüketici davranışları ve e-ticaretteki değişimler. Medya ve Kültürel Çalışmalar Dergisi, 3(1), 16-29.
  • Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing (pp. 878-887). Springer, Berlin, Heidelberg.
  • Jackins, V., Vimal, S., Kaliappan, M., & Lee, M. Y. (2021). AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. The Journal of Supercomputing, 77(5), 5198-5219.
  • Jothi, C. A., & Gaffoor, A. M. (2017). Impact of social media in online shopping. Journal on Management Studies, 3(3), 576-586.
  • Kahramanli, H., & Allahverdi, N. (2008). Design of a hybrid system for the diabetes and heart diseases. Expert systems with applications, 35(1-2), 82-89.
  • Kartal E. ve Özen Z., Dengesiz veri setlerinde sınıflandırma, In Mühendislikte Yapay Zekâ ve Uygulamaları, Sakarya: Sakarya Üniversitesi Kütüphanesi Yayınevi, 2017, pp. 109-131.
  • Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Handling imbalanced datasets: a review. GESTS International Transactions on Computer Science and Engineering, 30(1), 25-36.
  • Lessmann, S. (2004). Solving imbalanced classification problems with support vector machines. In IC-AI (Vol. 4, pp. 214-220).
  • Magidi, J., Nhamo, L., Mpandeli, S., & Mabhaudhi, T. (2021). Application of the random forest classifier to map irrigated areas using google earth engine. Remote Sensing, 13, 876, 1-16.
  • Mahmood, M. R., Abdulrazzaq, M. B., Zeebaree, S. R., Ibrahim, A. K., Zebari, R. R., & Dino, H. I. (2021). Classification techniques’ performance evaluation for facial expression recognition. Indonesian Journal of Electrical Engineering and Computer Science, 21(2), 176-1184.
  • Marins, M. A., Barros, B. D., Santos, I. H., Barrionuevo, D. C., Vargas, R. E., Prego, T. D. M., ... & Netto, S. L. (2021). Fault detection and classification in oil wells and production/service lines using random forest. Journal of Petroleum Science and Engineering, 197, 107879.
  • Mukherjee, M., & Khushi, M. (2021). SMOTE-ENC: A Novel SMOTE-based method to generate synthetic data for nominal and continuous features. Applied System Innovation, 4(1), 18.
  • Ok, A. Ö., Akar, Ö., & Güngör, O. (2011). Rastgele orman sınıflandırma yöntemi yardımıyla tarım alanlarındaki ürün çeşitliliğinin sınıflandırılması. TUFUAB 2011 VI. Teknik Sempozyumu, Antalya, Türkiye, 23 - 26 Şubat 2011, ss.1-7.
  • Oke, T., & Ramachandran, T. (2021). Determinants of decision to use and continued use of online shopping medium: a bivariate probit approach.
  • Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012, July). How many trees in a random forest?. In International Workshop on Machine Learning and Data Mining in Pattern Recognition (pp. 154-168). Springer, Berlin, Heidelberg.
  • Özgüven, N. (2011). Tüketicilerin online alışverişe karşı tutumları ile demografik özellikleri arasındaki ilişkinin analizi. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 2011(2), 47-54.
  • Özhan, Ş., & Altuğ, N. (2015). Tüketicilerin demografik özelliklerinin online alışveriş davranışları üzerine etkileri. Ege Academic Review, 15(4).
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
  • Pilík, M. (2012). On-line shopping on B2C markets in the Czech Republic. Journal of Competitiveness, 4(4).
  • Richards, J., & Shen, D. (2006). E-commerce adoption among chinese consumers: an exploratory Study. Journal of International Consumer Marketing, 18(3), 33-55.
  • Rokach, L., & Maimon, O. (2015). Data Mining With Decision Trees Theory and Applications (2nd Edition). Singapore: World Scientific Publishing Co. Pte. Ltd.
  • Saki, F., Sehgal, A., Panahi, I., & Kehtarnavaz, N. (2016). Smartphone-based real-time classification of noise signals using subband features and random forest classifier. In 2016 IEEE International Conference On Acoustics, Speech and Signal Processing (ICASSP) (pp. 2204-2208). IEEE.
  • Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond Accuracy, F-Score and ROC: A family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence (pp. 1015-1021). Springer, Berlin, Heidelberg.
  • Soler, J. R. L., Christidis, P., & Vassallo, J. M. (2021). Teleworking and online shopping: socio-economic factors affecting their impact on transport demand. Sustainability, 13(13), 1-24.
  • Spelmen, V. S., & Porkodi, R. (2018). A review on handling imbalanced data. In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) (pp. 1-11). IEEE.
  • Sreerekha, T., Saranya, R., & Prabhu, V. S. (2019). Consumer behaviour in online shopping. International Journal of Trend in Scientific Research and Development, 3(5), 460-464.
  • Su, C. T., & Hsiao, Y. H. (2007). An evaluation of the robustness of MTS for imbalanced data. IEEE Transactions on knowledge and data engineering, 19(10), 1321-1332.
  • Subudhi, A., Dash, M., & Sabut, S. (2020). Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybernetics and Biomedical Engineering, 40(1), 277-289.
  • Sujithra, M., & Padmavathi, G. (2016). Enhanced permission based malware detection in mobile devices using optimized random forest classifier with PSO-GA. Research Journal of Applied Sciences, Engineering and Technology, 12(7), 732-741.
  • Sullivan, W. (2017). Machine Learning For Beginners Guide Algorithms: Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction. Healthy Pragmatic Solutions Inc.
  • Torres, F. R., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2016). SMOTE-D a deterministic version of SMOTE. In Mexican Conference on Pattern Recognition (pp. 177-188). Springer, Cham.
  • Torun, E. (2017). Tüketici satın alma davranışları üzerinde internet ve sosyal medyanın yeri ve önemi. Elektronik Sosyal Bilimler Dergisi, 16(62), 955-970.
  • TÜİK (2019). Türkiye İstatistik Kurumu, Hanehalkı Bütçe Anketi 2019, Ankara.
  • TÜİK (2021a). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması 2011. 22 Temmuz 2021 tarihinde https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2011-8572 adresinden erişildi.
  • TÜİK (2021b). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması 2015. 22 Temmuz 2021 tarihinde https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2015-18660 adresinden erişildi.
  • TÜİK (2021c). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması 2020. 22 Temmuz 2021 tarihinde https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2020-33679 adresinden erişildi.
  • Vasić, N., Kilibarda, M., & Kaurin, T. (2019). the influence of online shopping determinants on customer satisfaction in the serbian market. Journal of Theoretical and Applied Electronic Commerce Research, 14(2), 70-89.
  • Wang, C., Shu, Q., Wang, X., Guo, B., Liu, P., & Li, Q. (2019). A random forest classifier based on pixel comparison features for urban LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 75-86.
  • Wei, Y., Yang, Y., Xu, M., & Huang, W. (2021). Intelligent fault diagnosis of planetary gearbox based on refined composite hierarchical fuzzy entropy and random forest. ISA transactions, 109, 340-351.
  • Yang, P., Wang, D., Zhao, W. B., Fu, L. H., Du, J. L., & Su, H. (2021). Ensemble of kernel extreme learning machine based random forest classifiers for automatic heartbeat classification. Biomedical Signal Processing and Control, 63, 102138.
  • Yavaş, M., Güran, A., & Uysal, M. (2020). Covid-19 Veri kümesinin Smote tabanlı örnekleme yöntemi uygulanarak sınıflandırılması. Avrupa Bilim ve Teknoloji Dergisi, 258-264.
  • Zhang, L., Liu, Z., Ren, T., Liu, D., Ma, Z., Tong, L., ... & Li, S. (2020). Identification of seed maize fields with high spatial resolution and multiple spectral remote sensing using random forest classifier. Remote Sensing, 12(3), 362.
  • Zhang, Y., Trusov, M., Stephen, A. T., & Jamal, Z. (2017). Online shopping and social media: friends or foes?. Journal of Marketing, 81(6), 24-41.

İNTERNETTEN ALIŞVERİŞ YAPAN HANELERİN RASTGELE ORMAN YÖNTEMİYLE TAHMİN EDİLMESİ

Yıl 2021, Cilt: 12 Sayı: 24, 728 - 752, 21.12.2021
https://doi.org/10.36543/kauiibfd.2021.030

Öz

Gerçekleştirilen çalışmanın amacı Türkiye hanehalkının internetten alışveriş yapma durumunun tespit edilmesidir. Çalışmada, TÜİK 2019 Hanehalkı Bütçe Anketinde yer alan ve 11521 haneden derlenen veri seti kullanılmıştır. İnternetten alışveriş yapan ve yapmayan hane sayısının dengesiz olduğu görülmüştür. Dengesiz veri SMOTE yöntemi kullanılarak dengeli hale getirilmiş ve Rastgele Orman yöntemiyle modellenmiştir. Çalışmanın doğruluğunu artırmak için 10’lu çapraz doğrulama yöntemi kullanılmıştır. Analiz sonuçlarına göre pozitif sınıflar için SMOTE yöntemi uygulanan modelin SMOTE yöntemi uygulanmayan modele göre F, G-Means ve MCC ölçütlerinde daha başarılı olduğu görülürken DP ölçütünde birbirine yakın sonuçlar elde ettiği görülmüştür. Negatif sınıflar için SMOTE yöntemi uygulanan modelin SMOTE yöntemi uygulanmayan modele göre G-Means ve MCC ölçütlerinde daha başarılı olduğu görülürken F ve DP ölçütlerinde birbirine yakın sonuçlar elde ettiği görülmüştür.

Kaynakça

  • Akhter, S. H. (2003). Digital divide and purchase intention: why demographic psychology matters. Journal of Economic Psychology, 24(3), 321-327.
  • Akhter, S. H. (2012). Who spends more online? The influence of time, usage variety, and privacy concern on online spending. Journal of Retailing and Consumer Services, 19(1), 109-115.
  • Akın, P., & Terzi, Y. (2020). Dengesiz veri setli sağkalım verilerinde cox regresyon ve rastgele orman yöntemlerin karşılaştırılması. Veri Bilimi, 3(1), 21-25.
  • Akosa JS. (2017). Predictive Accuracy: A misleading performance measure for highly imbalanced data. In: Proceedings of The SAS Global Forum 2017 Conference. Cary, North Carolina: SAS Institute Inc.; 2017. p. 942–2017.
  • Al-Maghrabi, T., Dennis, C., Halliday, S. V., & BinAli, A. (2011). Determinants of Customer Continuance Intention of Online Shopping. International Journal of Business Science & Applied Management (IJBSAM), 6(1), 41-66.
  • Alam, M. S., & Vuong, S. T. (2013). Random forest classification for detecting android malware. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 663-669). IEEE.
  • Arafat, M. Y., Hoque, S., & Farid, D. M. (2017). Cluster-Based under-sampling with random forest for multi-class ımbalanced classification. In 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA) (pp. 1-6). IEEE.
  • Armağan, E. A., & Turan, A. (2014). Internet üzerinden alışveriş: demografik faktörlerin, bireysel ihtiyaçların etkisi üzerine ampirik bir değerlendirme. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 28(3), 1-22.
  • Aydilek, İ. B. (2018). Yazılım hata tahmininde kullanılan metriklerin karar ağaçlarındaki bilgi kazançlarının incelenmesi ve iyileştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(5), 906-914.
  • Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models assessment over imbalanced data sets. Journal of Information Engineering and Applications, 3(10). 27-39.
  • Bhatti, A., & Akram, H. (2020). The moderating role of subjective norms between online shopping behaviour and its determinants. International Journal of Social Sciences and Economic Review, 2(1), 1-9.
  • Bhatti, A., Akram, H., Basit, H. M., Khan, A. U., Raza, S. M., & Naqvi, M. B. (2020). E-Commerce trends during Covid-19 pandemic. International Journal of Future Generation Communication and Networking, 13(2), 1449-1452.
  • Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.
  • Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal classifier for imbalanced data using matthews correlation coefficient metric. PloS one, 12(6), 1-17.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
  • Brown, J. B. (2018). Classifiers and their metrics quantified. Molecular Informatics, 37, 1-11.
  • Buyrukoğlu, S. (2021). Early detection of alzheimer’s disease using data mining: comparision of ensemble feature selection approaches. Konya Mühendislik Bilimleri Dergisi, 9(1), 50-61.
  • Cengiz E., & Şekerkaya A. (2010), İnternet kullanıcılarının internetten alış-verişe yönelik satın alma karar süreçlerinin incelenmesi ve kullanım yoğunlukları açısından sınıflandırılması üzerine bir araştırma, Öneri Dergisi, 9 (33), 33-49.
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
  • Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTEBoost: Improving prediction of the minority class in boosting. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 107-119). Springer, Berlin, Heidelberg.
  • Chen, S., He, H., & Garcia, E. A. (2010). RAMOBoost: ranked minority oversampling in boosting. IEEE Transactions on Neural Networks, 21(10), 1624-1642.
  • Chicco, D., & Jurman, G. (2020). The advantages of the matthews correlation coefficient (mcc) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21(1), 1-13.
  • Çiçek, R., & Mürütsoy, M. (2014). İnternet tüketicisinin satın alma davranışlarının incelenmesi üzerine bir araştırma. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 15(2), 291-305.
  • Daş, B., Türkoğlu, İ., DNA dizilimlerinin sınıflandırılmasında karar ağacı algoritmalarının karşılaştırılması, Elektrik – Elektronik - Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu (ELECO 2014), s.381-383, 27-29 Kasım 2014, Bursa.
  • Ding, Z. (2011). Diversified ensemble classifiers for highly imbalanced data learning and its application in bioinformatics (Doctoral dissertation, Georgia State University).
  • Dogru, N., & Subasi, A. (2018). Traffic accident detection using random forest classifier. In 2018 15th Learning and Technology Conference (L&T) (pp. 40-45). IEEE.
  • Doğrul, Ü. (2012). Elektronik alışveriş davranışında faydacı ve hedonik güdülerin etkisi. Sosyal ve Beşeri Bilimler Dergisi, 4(1), 321-331.
  • Du, P., Samat, A., Waske, B., Liu, S., & Li, Z. (2015). Random forest and rotation forest for fully polarized sar image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 38-53.
  • Ecer, O., Yetgin, Z., & Celik, T. (2018). Air write letter recognition using random forest classification on arduino dataset. International Journal of Scientific and Technological Research, 4(7), 1-9.
  • Ekelik, H., & ALTAŞ, D. (2019). Dijital reklam verilerinden yararlanarak potansiyel konut alıcılarının rastgele orman yöntemiyle sınıflandırılması. Journal Of Research İn Economics, 3(1), 28-45.
  • Ertürk, R., & Aktepe, C. (2020). Sosyal medyanın tüketicilerin satınalma davranışları üzerinde etkisi: Türkiye ve İran’daki üniversite öğrencileri üzerine bir uygulama. İşletme Araştırmaları Dergisi, 12(4), 4289-4304.
  • EUROSTAT (2021). Internet purchases by individuals (until 2019), 04 Temmuz 2021 tarihinde https://ec.europa.eu/eurostat/databrowser/view/isoc_ec_ibuy/default/table?lang=en. adresinden erişildi.
  • Farnaaz, N., & Jabbar, M. A. (2016). Random forest modeling for network intrusion detection system. Procedia Computer Science, 89, 213-217.
  • Ghimire, B., Rogan, J., & Miller, J. (2010). Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the getis statistic. Remote Sensing Letters, 1(1), 45-54.
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2004, September). Random forest classification of multisource remote sensing and geographic data. In IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, pp. 1049-1052). IEEE.
  • Goldsmith, R. E., & Flynn, L. R. (2005). Bricks, clicks, and pix: apparel buyers' use of stores, internet, and catalogs compared. International Journal of Retail & Distribution Management, 33(4).
  • Göktaş, M. E., & Yağanoğlu, M. (2020). Veri bilimi uygulamalarının hastalık teşhisinde kullanılması: kalp krizi örneği. Journal of Information Systems and Management Research, 2(2), 26-32.
  • Grashuis, J., Skevas, T., & Segovia, M. S. (2020). Grocery shopping preferences during the Covid-19 pandemic. Sustainability, 12(13), 1-10.
  • Gültaş, P., & Yıldırım, Y. (2016). İnternetten alışverişte tüketici davranışını etkileyen demografik faktörler. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 6(10), 32-51.
  • Güven, H. (2020). Covid-19 pandemik krizi sürecinde e-ticarette meydana gelen değişimler. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 7(5), 251-268.
  • Hacıalioğlu, A., & Sağlam, M. (2021). Covid-19 pandemi sürecinde tüketici davranışları ve e-ticaretteki değişimler. Medya ve Kültürel Çalışmalar Dergisi, 3(1), 16-29.
  • Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing (pp. 878-887). Springer, Berlin, Heidelberg.
  • Jackins, V., Vimal, S., Kaliappan, M., & Lee, M. Y. (2021). AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. The Journal of Supercomputing, 77(5), 5198-5219.
  • Jothi, C. A., & Gaffoor, A. M. (2017). Impact of social media in online shopping. Journal on Management Studies, 3(3), 576-586.
  • Kahramanli, H., & Allahverdi, N. (2008). Design of a hybrid system for the diabetes and heart diseases. Expert systems with applications, 35(1-2), 82-89.
  • Kartal E. ve Özen Z., Dengesiz veri setlerinde sınıflandırma, In Mühendislikte Yapay Zekâ ve Uygulamaları, Sakarya: Sakarya Üniversitesi Kütüphanesi Yayınevi, 2017, pp. 109-131.
  • Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Handling imbalanced datasets: a review. GESTS International Transactions on Computer Science and Engineering, 30(1), 25-36.
  • Lessmann, S. (2004). Solving imbalanced classification problems with support vector machines. In IC-AI (Vol. 4, pp. 214-220).
  • Magidi, J., Nhamo, L., Mpandeli, S., & Mabhaudhi, T. (2021). Application of the random forest classifier to map irrigated areas using google earth engine. Remote Sensing, 13, 876, 1-16.
  • Mahmood, M. R., Abdulrazzaq, M. B., Zeebaree, S. R., Ibrahim, A. K., Zebari, R. R., & Dino, H. I. (2021). Classification techniques’ performance evaluation for facial expression recognition. Indonesian Journal of Electrical Engineering and Computer Science, 21(2), 176-1184.
  • Marins, M. A., Barros, B. D., Santos, I. H., Barrionuevo, D. C., Vargas, R. E., Prego, T. D. M., ... & Netto, S. L. (2021). Fault detection and classification in oil wells and production/service lines using random forest. Journal of Petroleum Science and Engineering, 197, 107879.
  • Mukherjee, M., & Khushi, M. (2021). SMOTE-ENC: A Novel SMOTE-based method to generate synthetic data for nominal and continuous features. Applied System Innovation, 4(1), 18.
  • Ok, A. Ö., Akar, Ö., & Güngör, O. (2011). Rastgele orman sınıflandırma yöntemi yardımıyla tarım alanlarındaki ürün çeşitliliğinin sınıflandırılması. TUFUAB 2011 VI. Teknik Sempozyumu, Antalya, Türkiye, 23 - 26 Şubat 2011, ss.1-7.
  • Oke, T., & Ramachandran, T. (2021). Determinants of decision to use and continued use of online shopping medium: a bivariate probit approach.
  • Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012, July). How many trees in a random forest?. In International Workshop on Machine Learning and Data Mining in Pattern Recognition (pp. 154-168). Springer, Berlin, Heidelberg.
  • Özgüven, N. (2011). Tüketicilerin online alışverişe karşı tutumları ile demografik özellikleri arasındaki ilişkinin analizi. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 2011(2), 47-54.
  • Özhan, Ş., & Altuğ, N. (2015). Tüketicilerin demografik özelliklerinin online alışveriş davranışları üzerine etkileri. Ege Academic Review, 15(4).
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
  • Pilík, M. (2012). On-line shopping on B2C markets in the Czech Republic. Journal of Competitiveness, 4(4).
  • Richards, J., & Shen, D. (2006). E-commerce adoption among chinese consumers: an exploratory Study. Journal of International Consumer Marketing, 18(3), 33-55.
  • Rokach, L., & Maimon, O. (2015). Data Mining With Decision Trees Theory and Applications (2nd Edition). Singapore: World Scientific Publishing Co. Pte. Ltd.
  • Saki, F., Sehgal, A., Panahi, I., & Kehtarnavaz, N. (2016). Smartphone-based real-time classification of noise signals using subband features and random forest classifier. In 2016 IEEE International Conference On Acoustics, Speech and Signal Processing (ICASSP) (pp. 2204-2208). IEEE.
  • Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond Accuracy, F-Score and ROC: A family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence (pp. 1015-1021). Springer, Berlin, Heidelberg.
  • Soler, J. R. L., Christidis, P., & Vassallo, J. M. (2021). Teleworking and online shopping: socio-economic factors affecting their impact on transport demand. Sustainability, 13(13), 1-24.
  • Spelmen, V. S., & Porkodi, R. (2018). A review on handling imbalanced data. In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) (pp. 1-11). IEEE.
  • Sreerekha, T., Saranya, R., & Prabhu, V. S. (2019). Consumer behaviour in online shopping. International Journal of Trend in Scientific Research and Development, 3(5), 460-464.
  • Su, C. T., & Hsiao, Y. H. (2007). An evaluation of the robustness of MTS for imbalanced data. IEEE Transactions on knowledge and data engineering, 19(10), 1321-1332.
  • Subudhi, A., Dash, M., & Sabut, S. (2020). Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybernetics and Biomedical Engineering, 40(1), 277-289.
  • Sujithra, M., & Padmavathi, G. (2016). Enhanced permission based malware detection in mobile devices using optimized random forest classifier with PSO-GA. Research Journal of Applied Sciences, Engineering and Technology, 12(7), 732-741.
  • Sullivan, W. (2017). Machine Learning For Beginners Guide Algorithms: Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction. Healthy Pragmatic Solutions Inc.
  • Torres, F. R., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2016). SMOTE-D a deterministic version of SMOTE. In Mexican Conference on Pattern Recognition (pp. 177-188). Springer, Cham.
  • Torun, E. (2017). Tüketici satın alma davranışları üzerinde internet ve sosyal medyanın yeri ve önemi. Elektronik Sosyal Bilimler Dergisi, 16(62), 955-970.
  • TÜİK (2019). Türkiye İstatistik Kurumu, Hanehalkı Bütçe Anketi 2019, Ankara.
  • TÜİK (2021a). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması 2011. 22 Temmuz 2021 tarihinde https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2011-8572 adresinden erişildi.
  • TÜİK (2021b). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması 2015. 22 Temmuz 2021 tarihinde https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2015-18660 adresinden erişildi.
  • TÜİK (2021c). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması 2020. 22 Temmuz 2021 tarihinde https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2020-33679 adresinden erişildi.
  • Vasić, N., Kilibarda, M., & Kaurin, T. (2019). the influence of online shopping determinants on customer satisfaction in the serbian market. Journal of Theoretical and Applied Electronic Commerce Research, 14(2), 70-89.
  • Wang, C., Shu, Q., Wang, X., Guo, B., Liu, P., & Li, Q. (2019). A random forest classifier based on pixel comparison features for urban LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 75-86.
  • Wei, Y., Yang, Y., Xu, M., & Huang, W. (2021). Intelligent fault diagnosis of planetary gearbox based on refined composite hierarchical fuzzy entropy and random forest. ISA transactions, 109, 340-351.
  • Yang, P., Wang, D., Zhao, W. B., Fu, L. H., Du, J. L., & Su, H. (2021). Ensemble of kernel extreme learning machine based random forest classifiers for automatic heartbeat classification. Biomedical Signal Processing and Control, 63, 102138.
  • Yavaş, M., Güran, A., & Uysal, M. (2020). Covid-19 Veri kümesinin Smote tabanlı örnekleme yöntemi uygulanarak sınıflandırılması. Avrupa Bilim ve Teknoloji Dergisi, 258-264.
  • Zhang, L., Liu, Z., Ren, T., Liu, D., Ma, Z., Tong, L., ... & Li, S. (2020). Identification of seed maize fields with high spatial resolution and multiple spectral remote sensing using random forest classifier. Remote Sensing, 12(3), 362.
  • Zhang, Y., Trusov, M., Stephen, A. T., & Jamal, Z. (2017). Online shopping and social media: friends or foes?. Journal of Marketing, 81(6), 24-41.
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Uğur Ercan 0000-0002-9977-2718

Yayımlanma Tarihi 21 Aralık 2021
Kabul Tarihi 23 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 24

Kaynak Göster

APA Ercan, U. (2021). İNTERNETTEN ALIŞVERİŞ YAPAN HANELERİN RASTGELE ORMAN YÖNTEMİYLE TAHMİN EDİLMESİ. Kafkas Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 12(24), 728-752. https://doi.org/10.36543/kauiibfd.2021.030

KAÜİİBFD, Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergi Yayıncılığı'nın kurumsal dergisidir.

KAÜİİBFD 2022 yılından itibaren Web of Science'a dahil edilerek, Clarivate ürünü olan Emerging Sources Citation Index (ESCI) uluslararası alan endeksinde taranmaya başlamıştır. 

2025 Haziran ve Aralık sayısı İşletme alanı kotası dolmuştur. Bir sonraki duyuruya kadar İşletme alanındaki gönderiler değerlendirmeye alınmayacaktır. Dergimizin kapsamındaki diğer alanların makale kabul ve değerlendirmeleri devam etmektedir.