Araştırma Makalesi
BibTex RIS Kaynak Göster

ПАЛЕОМИКРОБИОЛОГИЯ: ОТ АРХЕОЛОГИИ К МИКРОБИОЛОГИИ

Yıl 2023, , 111 - 126, 18.12.2023
https://doi.org/10.17498/kdeniz.1394502

Öz

Палеомикробиология – дисциплина, включающая микробиологические исследования остатков микроорганизмов, полученных из древних руин. Археология – это отрасль науки, которая возникла для того, чтобы заполнить пробелы, отличные от тех, которые обнаружены в небольшом количестве письменных источников, и построить историю на прочном фундаменте, а также стремится осветить прошлое путем изучения остатков материальной культуры (культурных ценностей), созданных человеком в древности. Стало возможным получить некоторые данные из прошлого посредством некоторых микробиологических исследований археологических находок. Использование древних и исторических микроорганизмов из археологических находок для раскрытия информации о прошлой биологии человека, его жизненных путях и окружающей среде называется «археологической микробиологией», а изучение древних микроорганизмов с использованием ДНК, белков или химических маркеров, которые являются генетическим материалом клеток, называется «палеомикробиологией». Объединяя археологию и микробиологию, эта область предлагает уникальную перспективу для понимания микробного мира прошлых сообществ. Палеомикробиология выявляет болезни, которые были распространены в древних сообществах, что дает важную информацию о состоянии здоровья этих сообществ. Например, обнаружение туберкулеза и различных микроорганизмов в древних руинах помогает нам понять, как эти заболевания распространялись среди доисторических сообществ. Остатки микробов играют решающую роль в раскрытии древних миграционных движений и микробных взаимодействий между различными сообществами. Определяя миграционные и торговые пути, палеомикробиология проливает свет на взаимодействие между различными культурами на протяжении всей истории. В данной статье рассматривается важный вклад палеомикробиологии в археологию и ее потенциальное влияние в будущем. Палеомикробиология предоставляет исчерпывающую информацию по таким темам, как состояние здоровья древних сообществ, распространение болезней, эволюция сельского хозяйства и миграционные движения. Анализ ДНК микроорганизмов, полученной из древних руин, позволяет лучше понять исторические процессы и микробные взаимодействия. Кроме того, ожидается, что благодаря будущим технологическим достижениям и междисциплинарному сотрудничеству палеомикробиология будет играть еще более важную роль в области археологии.
В заключение, палеомикробиология представляет собой захватывающую область исследований, которая предлагает новые взгляды на историю человечества и исследует микробный мир прошлого вместе с дисциплиной археологией. Развитие этой дисциплины будет способствовать более глубокому пониманию условий жизни, состояния здоровья и культурных взаимодействий древних сообществ.

Kaynakça

  • Adamiak, J.- Otlewska, A.- Tafer, H.- Lopandic, K.- Gutarowska, B.- Sterflinger, K.- Piñar, G. (2018). “First evaluation of the microbiome of built Cultural Heritage by using the Ion Torrent next generation sequencing platform”, Int. Biodeterio,. Biodegrad, 131: 11–18.
  • Anastasiou, E. and Mitchell, P. D. (2013). “Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations”, Gene, 528: 33–40.
  • Blaser, M. J.- Chen, Y. and Reibman, J. (2008). “Does Helicobacter pylori protect against asthma and allergy?” Gut 57: 561–567.
  • Boast, A.P.- Weyrich, L. S.- Wood, J. R.- Metcalf, J. L.- Knight, R.- Cooper, A. (2018). “Coprolites reveal ecological interactions lost with the extinction of New Zealand birds”, Proc Natl Acad Sci USA. Feb 13;115 (7): 1546-155.
  • Bos, K. I.- Schuenemann, V. J.- Golding, G. B.- Burbano, H. A.- Waglechner, N.- Coombes, B. K.- McPhee, J. B.- DeWitte, S. N.- Meyer, M.- Schmedes, S.- Wood, J.- Earn, D. J.- Herring, D.A.- Bauer, P.- Poinar, H. N.- Krause, J. (2011). “A draft genome of Yersinia pestis from victims of the Black Death”, Nature, 478 (7370), 506-510.
  • Breurec, S.- Guillard, B.- Hem, S.- Brisse, S.- Dieye, F. B.- Huerre, M.- Oung, C.- Raymond, J.- Tan, T.S.- Thiberge, J. M.- Vong, S.- Monchy, D.- Linz, B. (2011). Evolutionary history of Helicobacter pylori sequences reflect past human migrations in Southeast Asia, PLoS One. 6 (7): e22058.
  • Brosch, R.- Gordon, S. V.- Marmiesse, M.- Brodin, P.- Buchrieser, C.- Eiglmeier, K.- Garnier, T.- Gutierrez, C.- Hewinson, G.- Kremer, K.- Parsons, L. M.- Pym, A. S.- Samper, S.- van Soolingen, D.- Cole, S. T. (2002). “A new evolutionary scenario for the Mycobacterium tuberculosis complex”, Proc Natl Acad Sci U S A. Mar 19; 99 (6): 3684-9.
  • Burrell, A. S.- Disotell, T. R. and Bergey, C. M. (2015). “The use of museum specimens with high-throughput DNA sequencers”, J Hum Evol, 79, 35–44.
  • Chen, Y. and Blaser, M. J. (2008). Helicobacter pylori colonization is inversely associated with childhood asthma. Journal of Infectious Diseases 198: 553–560.
  • Comas I.- Coscolla, M.- Luo, T.- Borrell, S.- Holt, K.E.- Kato-Maeda, M.- Parkhill, J.- Malla, B.- Berg, S.- Thwaites, G.- Yeboah-Manu, D.- Bothamley, G.- Mei, J.- Wei, L.- Bentley, S.- Harris, S. R.- Niemann, S.- Diel, R.- Aseffa, A.- Gao, Q.- Young, D.- Gagneux, S. (2013). “Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans”, Nat Genet, Oct; 45 (10): 1176-82.
  • Devault, A. M.- Golding, G. B.- Waglechner, N.- Enk, J. M.- Kuch, M.- Tien, J. H.- Shi, M.- Phil, M.- Fisman, D. N.- Dhody, A. N.- Forrest, S.- Bos, K. I.- Earn, D .J. D.- Holmes, E.C. and Poinar, H. N. (2014). “Second-pandemic strain of Vibrio cholerae from the philadelphia cholera outbreak of 1849”, N Engl J Med, 370: 334–340.
  • Diniz, G.- Karakayalı, M.- Aycan, İ.- Ertürk, G.- Uysal, G. (2022). “Mikroorganizmaların Keşfi ve Mikrobiyolojinin Tarihçesi”, İzmir Tıp Fak Derg, 1 (2) :49-55.
  • Dominguez-Bello, M.G. and Blaser, M. J. (2011). “The human microbiota as a marker for migrations of individuals and populations”, Annual Review of Anthropology 40: 451–474.
  • Donoghue, H. D.- Spigelman, M.- Zias, J.- Gernaey-Child, A.M. and Minnikin, D. E. (1998). “Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old”, Lett Appl Microbiol, 27 (5), 265–269.
  • Drancourt, Mm, Aboudharam, G., Signoli, M., Dutour, O. and Raoult, D. (1998). “Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia”, Proceedings of the National Academy of Sciences, 95(21),12637–12640.
  • Duggan, A.T.- Perdomo, M. F.- Piombino-Mascali, D.- Marciniak, S.- Poinar, D.- Emery, M. V.- Buchmann, J. P.- Duchêne, S.- Jankauskas, R.- Humphreys, M.- Golding, G. B.- Southon, J.- Devault, A.- Rouillard, J. M.- Sahl, J. W.- Dutour, O.- Hedman, K.- Sajantila, A.- Smith, G. L.- Holmes, E. C. (2016). “Poinar HN. 17th Century Variola Virus Reveals the Recent History of Smallpox”, Curr Biol, Dec 19; 26 (24): 3407-3412.
  • Eisenhofer, R.- Anderson, A.- Dobney, K.- Cooper, A. -Weyrich, L. (2019). “Ancient Microbial DNA in Dental Calculus: A New method for Studying Rapid Human Migration Events”, Journal of Island & Coastal Archaeology, 14: 149-162.
  • Gamble, C. (2014). Arkeolojinin Temelleri, Aktüel Arkeoloji Yayınları, İstanbul.
  • Gelabert, P.- Olalde, I.- de-Dios, T.- Civit, S.- Lalueza-Fox, C. (2017). “Malaria was a weak selective force in ancient Europeans”, Sci Rep. May 3;7 (1): 1377.
  • Gutarowska B.- Celikkol-Aydin S.- Bonifay, V. –Otlewska, A.- Aydin, E.- Oldham, A.L.- Brauer, J. I.- Duncan, K.E.- Adamiak, J.- Sunner, J. A.- Beech, I. B. (2015). Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings, Front Microbiol.
  • Higuchi, R.- Bowman, B.- Freiberger, M.- Ryder, O. A. and Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312 (5991), 282-284.
  • Jackson, P. J.- Hugh-Jones, M. E.- Adair, D. M.- Green, G.- Hill, K. K.- Kuske, C.R.- Grinberg, L. M.- Abramova, F. A. and Keim, P. (1998). “PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple Bacillus anthracis strains in different victims”, Proc Natl Acad Sci U S A, 95(3), 1224-1229.
  • Kalisz, H. M. (1988). “Microbial proteinases”, Adv Biochem Eng Biotechnol, 36: 1-65.
  • Krause-Kyora B.- Susat, J.- Key, F. M.- Kühnert, D.- Bosse, E.- Immel, A.- Rinne, C.- Kornell, S. C.- Yepes, D.- Franzenburg, S.- Heyne, H.O.- Meier, T.- Lösch, S.- Meller, H.- Friederich, S.- Nicklisch, N.- Alt, K. W.- Schreiber, S.- Tholey, A.- Herbig, A.- Nebel, A.- Krause, J. (2018). Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. Elife, May 10;7:e36666.
  • Kusters, J. G.- van Vliet, A. H. and Kuipers, E. J. (2006). “Pathogenesis of Helicobacter pylori infection”, Clinical Microbiology Reviews 19: 449–490.
  • Liu, Y.- Weyrich, L.S. and Llamas, B. (2020). “More arrows in the ancient DNA quiver: use of paleoepigenomes and paleomicrobiomes to investigate animal adaptation to environment”, Molecular Biology and Evolution 37: 307– 319.
  • Marciniak, S.- Prowse, T. L.- Herring, D. A.- Klunk, J.- Kuch, M.- Duggan, A.T.- Bondioli, L.- Holmes, E. C.- Poinar, H. N. (2016). “Plasmodium falciparum malaria in 1st-2nd century CE southern Italy”, Curr Biol, Dec 5; 2 6 (23): R1220- R1222.
  • Metcalf, J.L.- Song, S. J.- Morton, J. T.- Weiss, S.- Seguin-Orlando, A.- Joly, F.- Feh, C.- Taberlet, P.- Coissac Amir, A. E.- Willerslev, E.- Knight, R.- McKenzie, V.- Orlando L. (2017). Evaluating the impact of domestication and captivity on the horse gut microbiome, Scientific Reports Nov 14; 7 (1): 15497.
  • Moodley, Y.- Linz, B.- Bond, R. P.- Nieuwoudt, M.- Soodyall, H.- Schlebusch, C. M.- Bernhöft, S.- Hale J.- Suerbaum, S.- Mugisha, L.- van der Merwe, S. W.- Achtman, M. (2012). “Age of the association between Helicobacter pylori and man”, PLoS Pathog. 8 (5): e1002693.
  • Mullis, K. B. and Faloona, F.A. (1987). “Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction”, Meth Enzymol, 155: 335–350.
  • Mühlemann B.- Margaryan, A.- Damgaard, P.- Allentoft, M. E.- Vinner, L.- Hansen, A. J.- Weber, A.- Bazaliiskii, V. I.- Molak, M.- Arneborg, J.- Bogdanowicz, W.- Falys, C.- Sablin M.- Smrčka, V. Sten, S.- Tashbaeva, K.- Lynnerup, N.- Sikora, M.- Smith, D. J.- Fouchier, R. A. M. (2018). “Ancient human parvovirus b19 in Eurasia reveals its long-term association with humans”, PNAS 115: 7557–7562.
  • Ottoni, C.- Guellil, M.- Ozga, A. T.- Stone, A. C.- Kersten, O.- Bramanti, B.- Porcier, S.- van Neer, W. (2019). Metagenomic analysis of dental calculus in ancient Egyptian baboons, Sci Rep. Dec 23; 9 (1): 19637.
  • Ozga, A.T.- Gilby, I.- Nockerts, R. S.- Wilson, M. L.- Puseyi, A. and Stone, A. C. (2019). Oral microbiome diversity in chimpanzees from Gombe National Park. Scientific Reports 9: 17354.
  • Özbilen, S. (2020). “Arkeoloji; Geçmiş, Zaman ve Kuram”, Uluslararası Eskiçağ Tarihi Araştırmaları Dergisi, 2/1: 41 - 65.
  • Priscu, J. C.- Adams, E. E.- Lyons, W. B.- Voytek, M. A.- Mogk, D. W.- Brown, R. L.- McKay, C. P.- Takacs, C. D.- Welch, K. A.- Wolf, C. F.- Kirshtein, J. D. and Avci, R. (1999). “Geomicrobiology of subglacial ice above Lake Vostok, Antarctica”, Science, 286 (5447), 2141-2144.
  • Rasmussen, S.- Allentoft, M. E.- Nielsen, K.- Orlando, L.- Sikora, M.- Sjögren, K.G.- Pedersen, A. G.- Schubert, M.- van Dam, A.- Kapel, C. M.- Nielsen, H. B.- Brunak, S.- Avetisyan, P.- Epimakhov, A.- Khalyapin, M. V.- Gnuni, A.- Kriiska, A.- Lasak, I.- Metspalu, M.- Moiseyev, V. (2015). “Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago”, Cell, 163 (3): 571-582.
  • Renfew, C.- Bahn, P. (2017). Arkeoloji: Kuramlar, Yöntemler ve Uygulama, Homer Kitapevi, İstanbul.
  • Rivera-Perez, J. I.- Santiago-Rodriguez, T. M-, Toranzos, G. A. (2016). “Paleomicrobiology: a snapshot of ancient microbes and approaches to forensic microbiology”, Microbiology Spectrum, 4( 4): 1-14.
  • Salo, W. L.- Aufderheide, A. C.- Buikstra, J. and Holcomb, T. A. (1994). “Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy”, Proc Natl Acad Sci USA, 91 (6): 2091-2094.
  • Schopf, J. W. (2006). “Fossil evidence of Archaean life”, Philos Trans R Soc Lond B Biol Sci, 361: 869–885.
  • Schuenemann, V. J.- Singh, P.- Mendum, T. A.- Krause-Kyora, B.- Jäger, G.- Bos, K. I., Herbig, A.- Economou, C.- Benjak, A.- Busso, P.- Nebel, A.- Boldsen, J. L.- Kjellström, A.- Wu, H.- Stewart, G. R.- Taylor, G. M.- Bauer, P.- Lee, O. Y.- Wu, H. H.- Minnikin, D.E.- Besra, G.S.- Tucker, K.- Roffey, S.- Sow, S. O.- Cole, S. T.- Nieselt, K.- Krause, J. (2013). “Genome-wide comparison of medieval and modern Mycobacterium leprae”, Science, Jul 12;341 (6142): 179-83.
  • Spigelman, M. and Lemma, E. (1993). “The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons”, International Journal of Osteoarchaeology, 3 (2): 137–143.
  • Spyrou, M. A.- Keller, M.- Tukhbatova, R. I.- Scheib, C. L.- Nelson, E. and Andrades Valtueña, A. (2019). “Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes”, Nat Commun, 10: 4470.
  • Tito, R. Y.- Macmil, S.- Wiley, G.- Najar, F.- Cleeland, L.- Qu, C.- Wang, P.- Romagne, F.- Leonard, S.- Ruiz, A. J.- Reinhard, K.- Roe, B. A. and Lewis, C. M. Jr. (2008). “Phylotyping and functional analysis of two ancient human microbiomes”, PLoS One, 3(11) :e3703.
  • Tsangaras, K. and Greenwood, A. D. (2012). “Museums and disease: using tissue archive and museum samples to study pathogens”, Ann Anat, 194 (1): 58–73.
  • Sevin, V. (1999). Arkeolojik Kazı Sistemi El Kitabı, Arkeoloji ve Sanat Yayınları, İstanbul.
  • Vågene, Å. J.- Herbig, A.- Campana, M. G.- Robles García, N. M.- Warinner, C.- Sabin, S.- Spyrou, M. A.- Andrades V. A.- Huson, D.- Tuross, N.- Bos, K. I. and Krause, J. (2018). “Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico”, Nat Ecol Evol, 2 (3): 520-528.
  • Wagner, D. M.- Klunk, J.- Harbeck, M.- Devault, A.- Waglechner, N.- Sahl, J. W.- Enk, J.- Birdsell, D. N.- Kuch, M.- Lumibao, C.- Poinar, D.- Pearson, T.- Fourment, M.- Golding, B.- Riehm, J. M.- Earn, D. J.- Dewitte, S.- Rouillard, J. M.- Grupe, G.- Wiechmann, I. (2014). “Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis”, Lancet Infect Dis, 14 (4): 319-326.
  • Welker, F.- Duijm, E.- Gaag, K. J.- van der Geel, B.- van Knijff, P. De.- Leeuwen, J.- van Mol, D.- Plicht, J.- van der Raes, N.- Reumer, J.- Gravendeel, B. (2014). “Analysis of coprolites from the extinct mountain goat Myotragus balearicus”, Quaternary Research 81(1): 106–116.
  • Weyrich, L. S. and Pérez, V. (2023). Archaeological Microbiology. In:Handbook of Archaeological Sciences, Second Edition, Edited by A. Mark Pollard, Ruth Ann Armitage, and Cheryl A. Makarewicz. John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.

PALEOMICROBIOLOGY: FROM ARCHEOLOGY TO MICROBIOLOGY

Yıl 2023, , 111 - 126, 18.12.2023
https://doi.org/10.17498/kdeniz.1394502

Öz

Paleomicrobiology is a discipline that involves microbiological studies on the remains of microorganisms from ancient ruins. Archaeology is a branch of science that has emerged to fill the gaps other than those revealed by a small number of written sources and to base history on solid foundations, and aims to illuminate the past by examining the remains of material culture (cultural assets) produced by human beings in ancient times. It has become possible to obtain some data from the past through some microbiological examinations from archaeological finds. The use of ancient and historical microorganisms from archaeological finds to reveal information about past human biology, life paths and environments is called "archaeological microbiology", and the study of ancient microorganisms using DNA, proteins or chemical markers, which are the genetic material of cells, is called "paleomicrobiology". By combining archaeology and microbiology, the field offers a unique perspective for understanding the microbial world of past communities. Paleomicrobiology identifies diseases that were common in ancient communities, providing important insights into the health status of these communities. For example, the detection of tuberculosis and various microorganisms in ancient remains helps us understand how these diseases spread among prehistoric communities. Microbial remains play a critical role in revealing ancient migratory movements and microbial interactions between different communities. By identifying migration and trade routes, paleomicrobiology illuminates interactions between different cultures throughout history. This article examines the important contributions of paleomicrobiology to archaeology and its potential impact for the future. Paleomicrobiology provides comprehensive insights into the health status of ancient communities, the spread of disease, the evolution of agriculture and migratory movements. The analysis of microbial DNA from ancient remains provides a better understanding of historical processes and microbial interactions. Furthermore, with future technological advances and interdisciplinary collaboration, paleomicrobiology is expected to play an even more important role in the field of archaeology.
In conclusion, paleomicrobiology represents an exciting field of research that offers new insights into human history and explores the microbial world of the past in conjunction with the discipline of archaeology. The advancement of this discipline will contribute to a deeper understanding of the living conditions, health status and cultural interactions of ancient communities.

Kaynakça

  • Adamiak, J.- Otlewska, A.- Tafer, H.- Lopandic, K.- Gutarowska, B.- Sterflinger, K.- Piñar, G. (2018). “First evaluation of the microbiome of built Cultural Heritage by using the Ion Torrent next generation sequencing platform”, Int. Biodeterio,. Biodegrad, 131: 11–18.
  • Anastasiou, E. and Mitchell, P. D. (2013). “Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations”, Gene, 528: 33–40.
  • Blaser, M. J.- Chen, Y. and Reibman, J. (2008). “Does Helicobacter pylori protect against asthma and allergy?” Gut 57: 561–567.
  • Boast, A.P.- Weyrich, L. S.- Wood, J. R.- Metcalf, J. L.- Knight, R.- Cooper, A. (2018). “Coprolites reveal ecological interactions lost with the extinction of New Zealand birds”, Proc Natl Acad Sci USA. Feb 13;115 (7): 1546-155.
  • Bos, K. I.- Schuenemann, V. J.- Golding, G. B.- Burbano, H. A.- Waglechner, N.- Coombes, B. K.- McPhee, J. B.- DeWitte, S. N.- Meyer, M.- Schmedes, S.- Wood, J.- Earn, D. J.- Herring, D.A.- Bauer, P.- Poinar, H. N.- Krause, J. (2011). “A draft genome of Yersinia pestis from victims of the Black Death”, Nature, 478 (7370), 506-510.
  • Breurec, S.- Guillard, B.- Hem, S.- Brisse, S.- Dieye, F. B.- Huerre, M.- Oung, C.- Raymond, J.- Tan, T.S.- Thiberge, J. M.- Vong, S.- Monchy, D.- Linz, B. (2011). Evolutionary history of Helicobacter pylori sequences reflect past human migrations in Southeast Asia, PLoS One. 6 (7): e22058.
  • Brosch, R.- Gordon, S. V.- Marmiesse, M.- Brodin, P.- Buchrieser, C.- Eiglmeier, K.- Garnier, T.- Gutierrez, C.- Hewinson, G.- Kremer, K.- Parsons, L. M.- Pym, A. S.- Samper, S.- van Soolingen, D.- Cole, S. T. (2002). “A new evolutionary scenario for the Mycobacterium tuberculosis complex”, Proc Natl Acad Sci U S A. Mar 19; 99 (6): 3684-9.
  • Burrell, A. S.- Disotell, T. R. and Bergey, C. M. (2015). “The use of museum specimens with high-throughput DNA sequencers”, J Hum Evol, 79, 35–44.
  • Chen, Y. and Blaser, M. J. (2008). Helicobacter pylori colonization is inversely associated with childhood asthma. Journal of Infectious Diseases 198: 553–560.
  • Comas I.- Coscolla, M.- Luo, T.- Borrell, S.- Holt, K.E.- Kato-Maeda, M.- Parkhill, J.- Malla, B.- Berg, S.- Thwaites, G.- Yeboah-Manu, D.- Bothamley, G.- Mei, J.- Wei, L.- Bentley, S.- Harris, S. R.- Niemann, S.- Diel, R.- Aseffa, A.- Gao, Q.- Young, D.- Gagneux, S. (2013). “Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans”, Nat Genet, Oct; 45 (10): 1176-82.
  • Devault, A. M.- Golding, G. B.- Waglechner, N.- Enk, J. M.- Kuch, M.- Tien, J. H.- Shi, M.- Phil, M.- Fisman, D. N.- Dhody, A. N.- Forrest, S.- Bos, K. I.- Earn, D .J. D.- Holmes, E.C. and Poinar, H. N. (2014). “Second-pandemic strain of Vibrio cholerae from the philadelphia cholera outbreak of 1849”, N Engl J Med, 370: 334–340.
  • Diniz, G.- Karakayalı, M.- Aycan, İ.- Ertürk, G.- Uysal, G. (2022). “Mikroorganizmaların Keşfi ve Mikrobiyolojinin Tarihçesi”, İzmir Tıp Fak Derg, 1 (2) :49-55.
  • Dominguez-Bello, M.G. and Blaser, M. J. (2011). “The human microbiota as a marker for migrations of individuals and populations”, Annual Review of Anthropology 40: 451–474.
  • Donoghue, H. D.- Spigelman, M.- Zias, J.- Gernaey-Child, A.M. and Minnikin, D. E. (1998). “Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old”, Lett Appl Microbiol, 27 (5), 265–269.
  • Drancourt, Mm, Aboudharam, G., Signoli, M., Dutour, O. and Raoult, D. (1998). “Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia”, Proceedings of the National Academy of Sciences, 95(21),12637–12640.
  • Duggan, A.T.- Perdomo, M. F.- Piombino-Mascali, D.- Marciniak, S.- Poinar, D.- Emery, M. V.- Buchmann, J. P.- Duchêne, S.- Jankauskas, R.- Humphreys, M.- Golding, G. B.- Southon, J.- Devault, A.- Rouillard, J. M.- Sahl, J. W.- Dutour, O.- Hedman, K.- Sajantila, A.- Smith, G. L.- Holmes, E. C. (2016). “Poinar HN. 17th Century Variola Virus Reveals the Recent History of Smallpox”, Curr Biol, Dec 19; 26 (24): 3407-3412.
  • Eisenhofer, R.- Anderson, A.- Dobney, K.- Cooper, A. -Weyrich, L. (2019). “Ancient Microbial DNA in Dental Calculus: A New method for Studying Rapid Human Migration Events”, Journal of Island & Coastal Archaeology, 14: 149-162.
  • Gamble, C. (2014). Arkeolojinin Temelleri, Aktüel Arkeoloji Yayınları, İstanbul.
  • Gelabert, P.- Olalde, I.- de-Dios, T.- Civit, S.- Lalueza-Fox, C. (2017). “Malaria was a weak selective force in ancient Europeans”, Sci Rep. May 3;7 (1): 1377.
  • Gutarowska B.- Celikkol-Aydin S.- Bonifay, V. –Otlewska, A.- Aydin, E.- Oldham, A.L.- Brauer, J. I.- Duncan, K.E.- Adamiak, J.- Sunner, J. A.- Beech, I. B. (2015). Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings, Front Microbiol.
  • Higuchi, R.- Bowman, B.- Freiberger, M.- Ryder, O. A. and Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312 (5991), 282-284.
  • Jackson, P. J.- Hugh-Jones, M. E.- Adair, D. M.- Green, G.- Hill, K. K.- Kuske, C.R.- Grinberg, L. M.- Abramova, F. A. and Keim, P. (1998). “PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple Bacillus anthracis strains in different victims”, Proc Natl Acad Sci U S A, 95(3), 1224-1229.
  • Kalisz, H. M. (1988). “Microbial proteinases”, Adv Biochem Eng Biotechnol, 36: 1-65.
  • Krause-Kyora B.- Susat, J.- Key, F. M.- Kühnert, D.- Bosse, E.- Immel, A.- Rinne, C.- Kornell, S. C.- Yepes, D.- Franzenburg, S.- Heyne, H.O.- Meier, T.- Lösch, S.- Meller, H.- Friederich, S.- Nicklisch, N.- Alt, K. W.- Schreiber, S.- Tholey, A.- Herbig, A.- Nebel, A.- Krause, J. (2018). Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. Elife, May 10;7:e36666.
  • Kusters, J. G.- van Vliet, A. H. and Kuipers, E. J. (2006). “Pathogenesis of Helicobacter pylori infection”, Clinical Microbiology Reviews 19: 449–490.
  • Liu, Y.- Weyrich, L.S. and Llamas, B. (2020). “More arrows in the ancient DNA quiver: use of paleoepigenomes and paleomicrobiomes to investigate animal adaptation to environment”, Molecular Biology and Evolution 37: 307– 319.
  • Marciniak, S.- Prowse, T. L.- Herring, D. A.- Klunk, J.- Kuch, M.- Duggan, A.T.- Bondioli, L.- Holmes, E. C.- Poinar, H. N. (2016). “Plasmodium falciparum malaria in 1st-2nd century CE southern Italy”, Curr Biol, Dec 5; 2 6 (23): R1220- R1222.
  • Metcalf, J.L.- Song, S. J.- Morton, J. T.- Weiss, S.- Seguin-Orlando, A.- Joly, F.- Feh, C.- Taberlet, P.- Coissac Amir, A. E.- Willerslev, E.- Knight, R.- McKenzie, V.- Orlando L. (2017). Evaluating the impact of domestication and captivity on the horse gut microbiome, Scientific Reports Nov 14; 7 (1): 15497.
  • Moodley, Y.- Linz, B.- Bond, R. P.- Nieuwoudt, M.- Soodyall, H.- Schlebusch, C. M.- Bernhöft, S.- Hale J.- Suerbaum, S.- Mugisha, L.- van der Merwe, S. W.- Achtman, M. (2012). “Age of the association between Helicobacter pylori and man”, PLoS Pathog. 8 (5): e1002693.
  • Mullis, K. B. and Faloona, F.A. (1987). “Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction”, Meth Enzymol, 155: 335–350.
  • Mühlemann B.- Margaryan, A.- Damgaard, P.- Allentoft, M. E.- Vinner, L.- Hansen, A. J.- Weber, A.- Bazaliiskii, V. I.- Molak, M.- Arneborg, J.- Bogdanowicz, W.- Falys, C.- Sablin M.- Smrčka, V. Sten, S.- Tashbaeva, K.- Lynnerup, N.- Sikora, M.- Smith, D. J.- Fouchier, R. A. M. (2018). “Ancient human parvovirus b19 in Eurasia reveals its long-term association with humans”, PNAS 115: 7557–7562.
  • Ottoni, C.- Guellil, M.- Ozga, A. T.- Stone, A. C.- Kersten, O.- Bramanti, B.- Porcier, S.- van Neer, W. (2019). Metagenomic analysis of dental calculus in ancient Egyptian baboons, Sci Rep. Dec 23; 9 (1): 19637.
  • Ozga, A.T.- Gilby, I.- Nockerts, R. S.- Wilson, M. L.- Puseyi, A. and Stone, A. C. (2019). Oral microbiome diversity in chimpanzees from Gombe National Park. Scientific Reports 9: 17354.
  • Özbilen, S. (2020). “Arkeoloji; Geçmiş, Zaman ve Kuram”, Uluslararası Eskiçağ Tarihi Araştırmaları Dergisi, 2/1: 41 - 65.
  • Priscu, J. C.- Adams, E. E.- Lyons, W. B.- Voytek, M. A.- Mogk, D. W.- Brown, R. L.- McKay, C. P.- Takacs, C. D.- Welch, K. A.- Wolf, C. F.- Kirshtein, J. D. and Avci, R. (1999). “Geomicrobiology of subglacial ice above Lake Vostok, Antarctica”, Science, 286 (5447), 2141-2144.
  • Rasmussen, S.- Allentoft, M. E.- Nielsen, K.- Orlando, L.- Sikora, M.- Sjögren, K.G.- Pedersen, A. G.- Schubert, M.- van Dam, A.- Kapel, C. M.- Nielsen, H. B.- Brunak, S.- Avetisyan, P.- Epimakhov, A.- Khalyapin, M. V.- Gnuni, A.- Kriiska, A.- Lasak, I.- Metspalu, M.- Moiseyev, V. (2015). “Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago”, Cell, 163 (3): 571-582.
  • Renfew, C.- Bahn, P. (2017). Arkeoloji: Kuramlar, Yöntemler ve Uygulama, Homer Kitapevi, İstanbul.
  • Rivera-Perez, J. I.- Santiago-Rodriguez, T. M-, Toranzos, G. A. (2016). “Paleomicrobiology: a snapshot of ancient microbes and approaches to forensic microbiology”, Microbiology Spectrum, 4( 4): 1-14.
  • Salo, W. L.- Aufderheide, A. C.- Buikstra, J. and Holcomb, T. A. (1994). “Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy”, Proc Natl Acad Sci USA, 91 (6): 2091-2094.
  • Schopf, J. W. (2006). “Fossil evidence of Archaean life”, Philos Trans R Soc Lond B Biol Sci, 361: 869–885.
  • Schuenemann, V. J.- Singh, P.- Mendum, T. A.- Krause-Kyora, B.- Jäger, G.- Bos, K. I., Herbig, A.- Economou, C.- Benjak, A.- Busso, P.- Nebel, A.- Boldsen, J. L.- Kjellström, A.- Wu, H.- Stewart, G. R.- Taylor, G. M.- Bauer, P.- Lee, O. Y.- Wu, H. H.- Minnikin, D.E.- Besra, G.S.- Tucker, K.- Roffey, S.- Sow, S. O.- Cole, S. T.- Nieselt, K.- Krause, J. (2013). “Genome-wide comparison of medieval and modern Mycobacterium leprae”, Science, Jul 12;341 (6142): 179-83.
  • Spigelman, M. and Lemma, E. (1993). “The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons”, International Journal of Osteoarchaeology, 3 (2): 137–143.
  • Spyrou, M. A.- Keller, M.- Tukhbatova, R. I.- Scheib, C. L.- Nelson, E. and Andrades Valtueña, A. (2019). “Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes”, Nat Commun, 10: 4470.
  • Tito, R. Y.- Macmil, S.- Wiley, G.- Najar, F.- Cleeland, L.- Qu, C.- Wang, P.- Romagne, F.- Leonard, S.- Ruiz, A. J.- Reinhard, K.- Roe, B. A. and Lewis, C. M. Jr. (2008). “Phylotyping and functional analysis of two ancient human microbiomes”, PLoS One, 3(11) :e3703.
  • Tsangaras, K. and Greenwood, A. D. (2012). “Museums and disease: using tissue archive and museum samples to study pathogens”, Ann Anat, 194 (1): 58–73.
  • Sevin, V. (1999). Arkeolojik Kazı Sistemi El Kitabı, Arkeoloji ve Sanat Yayınları, İstanbul.
  • Vågene, Å. J.- Herbig, A.- Campana, M. G.- Robles García, N. M.- Warinner, C.- Sabin, S.- Spyrou, M. A.- Andrades V. A.- Huson, D.- Tuross, N.- Bos, K. I. and Krause, J. (2018). “Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico”, Nat Ecol Evol, 2 (3): 520-528.
  • Wagner, D. M.- Klunk, J.- Harbeck, M.- Devault, A.- Waglechner, N.- Sahl, J. W.- Enk, J.- Birdsell, D. N.- Kuch, M.- Lumibao, C.- Poinar, D.- Pearson, T.- Fourment, M.- Golding, B.- Riehm, J. M.- Earn, D. J.- Dewitte, S.- Rouillard, J. M.- Grupe, G.- Wiechmann, I. (2014). “Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis”, Lancet Infect Dis, 14 (4): 319-326.
  • Welker, F.- Duijm, E.- Gaag, K. J.- van der Geel, B.- van Knijff, P. De.- Leeuwen, J.- van Mol, D.- Plicht, J.- van der Raes, N.- Reumer, J.- Gravendeel, B. (2014). “Analysis of coprolites from the extinct mountain goat Myotragus balearicus”, Quaternary Research 81(1): 106–116.
  • Weyrich, L. S. and Pérez, V. (2023). Archaeological Microbiology. In:Handbook of Archaeological Sciences, Second Edition, Edited by A. Mark Pollard, Ruth Ann Armitage, and Cheryl A. Makarewicz. John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.

PALEOMİKROBİYOLOJİ: ARKEOLOJİDEN MİKROBİYOLOJİYE

Yıl 2023, , 111 - 126, 18.12.2023
https://doi.org/10.17498/kdeniz.1394502

Öz

Paleomikrobiyoloji, antik kalıntılardan elde edilen mikroorganizma kalıntıları üzerinde yapılan mikrobiyolojik çalışmaları içeren bir disiplindir. Arkeoloji Bilimi, az sayıdaki yazılı kaynaklarla ortaya konulanlar dışındaki boşlukları doldurmak ve tarihi sağlam temeller üzerine dayandırmak üzere ortaya çıkmış, eski çağlarda insanoğlunun elinden çıkan maddesel kültür (kültür varlıkları) kalıntılarını inceleyerek geçmişimi aydınlatmayı amaç edinen bir bilim dalıdır. Arkeolojik buluntulardan mikrobiyolojik bazı incelemelerle geçmişe ait bazı veriler elde edilmesine olanak sağlar hale gelmiştir. Geçmiş insan biyolojisi, yaşam yolları ve ortamları hakkında bilgi ortaya çıkarmak için arkeolojik buluntulardan antik ve antik mikroorganizmaların kullanılması ”arkeolojik mikrobiyoloji”, hücrelerin genetik materyali olan DNA, proteinler veya kimyasal belirteçler kullanılarak eski mikroorganizmaların incelenmesi ise “paleomikrobiyoloji” olarak isimlendirilir. Bu alan, arkeoloji ve mikrobiyolojiyi birleştirerek, geçmiş toplulukların mikrobiyel dünyasını anlamak için benzersiz bir bakış açısı sunar. Paleomikrobiyoloji, antik topluluklarda yaygın olan hastalıkları belirleyerek bu toplulukların sağlık durumu hakkında önemli bilgiler sağlar. Örneğin, tüberküloz ve çeşitli mikroorganizmaların antik kalıntılarda tespit edilmesi, bu hastalıkların tarih öncesi topluluklar arasında nasıl yayıldığını anlamamıza yardımcı olur. Mikroorganizma kalıntıları, antik göç hareketlerini ve farklı topluluklar arasındaki mikrobiyel etkileşimleri ortaya koymada kritik bir rol oynar. Göç ve ticaret yollarını belirleyerek, paleomikrobiyoloji, tarih boyunca farklı kültürler arasındaki etkileşimleri aydınlatır. Makale, paleomikrobiyolojinin arkeolojiye sağladığı önemli katkıları ve gelecek dönemlerdeki potansiyel etkilerini incelemektedir. Paleomikrobiyoloji, antik toplulukların sağlık durumu, hastalıkların yayılımı, tarımın evrimi ve göç hareketleri gibi konularda kapsamlı bilgiler sağlar. Antik kalıntılardan elde edilen mikroorganizma DNA'sı analizi, tarihsel süreçlerin ve mikrobiyel etkileşimlerin daha iyi anlaşılmasını sağlar. Ayrıca, gelecekteki teknolojik gelişmeler ve interdisipliner işbirliği ile birlikte, paleomikrobiyolojinin arkeoloji alanında daha da önemli bir rol oynaması beklenmektedir.
Sonuç olarak, paleomikrobiyoloji, insanlık tarihine dair yeni bakış açıları sunan ve arkeoloji disipliniyle birlikte geçmişin mikrobiyel dünyasını keşfeden heyecan verici bir araştırma alanını temsil eder. Bu disiplinin ilerlemesi, antik toplulukların yaşam koşulları, sağlık durumları ve kültürel etkileşimleri hakkında daha derinlemesine bir anlayışa ulaşmamıza katkı sağlayacaktır.

Kaynakça

  • Adamiak, J.- Otlewska, A.- Tafer, H.- Lopandic, K.- Gutarowska, B.- Sterflinger, K.- Piñar, G. (2018). “First evaluation of the microbiome of built Cultural Heritage by using the Ion Torrent next generation sequencing platform”, Int. Biodeterio,. Biodegrad, 131: 11–18.
  • Anastasiou, E. and Mitchell, P. D. (2013). “Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations”, Gene, 528: 33–40.
  • Blaser, M. J.- Chen, Y. and Reibman, J. (2008). “Does Helicobacter pylori protect against asthma and allergy?” Gut 57: 561–567.
  • Boast, A.P.- Weyrich, L. S.- Wood, J. R.- Metcalf, J. L.- Knight, R.- Cooper, A. (2018). “Coprolites reveal ecological interactions lost with the extinction of New Zealand birds”, Proc Natl Acad Sci USA. Feb 13;115 (7): 1546-155.
  • Bos, K. I.- Schuenemann, V. J.- Golding, G. B.- Burbano, H. A.- Waglechner, N.- Coombes, B. K.- McPhee, J. B.- DeWitte, S. N.- Meyer, M.- Schmedes, S.- Wood, J.- Earn, D. J.- Herring, D.A.- Bauer, P.- Poinar, H. N.- Krause, J. (2011). “A draft genome of Yersinia pestis from victims of the Black Death”, Nature, 478 (7370), 506-510.
  • Breurec, S.- Guillard, B.- Hem, S.- Brisse, S.- Dieye, F. B.- Huerre, M.- Oung, C.- Raymond, J.- Tan, T.S.- Thiberge, J. M.- Vong, S.- Monchy, D.- Linz, B. (2011). Evolutionary history of Helicobacter pylori sequences reflect past human migrations in Southeast Asia, PLoS One. 6 (7): e22058.
  • Brosch, R.- Gordon, S. V.- Marmiesse, M.- Brodin, P.- Buchrieser, C.- Eiglmeier, K.- Garnier, T.- Gutierrez, C.- Hewinson, G.- Kremer, K.- Parsons, L. M.- Pym, A. S.- Samper, S.- van Soolingen, D.- Cole, S. T. (2002). “A new evolutionary scenario for the Mycobacterium tuberculosis complex”, Proc Natl Acad Sci U S A. Mar 19; 99 (6): 3684-9.
  • Burrell, A. S.- Disotell, T. R. and Bergey, C. M. (2015). “The use of museum specimens with high-throughput DNA sequencers”, J Hum Evol, 79, 35–44.
  • Chen, Y. and Blaser, M. J. (2008). Helicobacter pylori colonization is inversely associated with childhood asthma. Journal of Infectious Diseases 198: 553–560.
  • Comas I.- Coscolla, M.- Luo, T.- Borrell, S.- Holt, K.E.- Kato-Maeda, M.- Parkhill, J.- Malla, B.- Berg, S.- Thwaites, G.- Yeboah-Manu, D.- Bothamley, G.- Mei, J.- Wei, L.- Bentley, S.- Harris, S. R.- Niemann, S.- Diel, R.- Aseffa, A.- Gao, Q.- Young, D.- Gagneux, S. (2013). “Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans”, Nat Genet, Oct; 45 (10): 1176-82.
  • Devault, A. M.- Golding, G. B.- Waglechner, N.- Enk, J. M.- Kuch, M.- Tien, J. H.- Shi, M.- Phil, M.- Fisman, D. N.- Dhody, A. N.- Forrest, S.- Bos, K. I.- Earn, D .J. D.- Holmes, E.C. and Poinar, H. N. (2014). “Second-pandemic strain of Vibrio cholerae from the philadelphia cholera outbreak of 1849”, N Engl J Med, 370: 334–340.
  • Diniz, G.- Karakayalı, M.- Aycan, İ.- Ertürk, G.- Uysal, G. (2022). “Mikroorganizmaların Keşfi ve Mikrobiyolojinin Tarihçesi”, İzmir Tıp Fak Derg, 1 (2) :49-55.
  • Dominguez-Bello, M.G. and Blaser, M. J. (2011). “The human microbiota as a marker for migrations of individuals and populations”, Annual Review of Anthropology 40: 451–474.
  • Donoghue, H. D.- Spigelman, M.- Zias, J.- Gernaey-Child, A.M. and Minnikin, D. E. (1998). “Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old”, Lett Appl Microbiol, 27 (5), 265–269.
  • Drancourt, Mm, Aboudharam, G., Signoli, M., Dutour, O. and Raoult, D. (1998). “Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia”, Proceedings of the National Academy of Sciences, 95(21),12637–12640.
  • Duggan, A.T.- Perdomo, M. F.- Piombino-Mascali, D.- Marciniak, S.- Poinar, D.- Emery, M. V.- Buchmann, J. P.- Duchêne, S.- Jankauskas, R.- Humphreys, M.- Golding, G. B.- Southon, J.- Devault, A.- Rouillard, J. M.- Sahl, J. W.- Dutour, O.- Hedman, K.- Sajantila, A.- Smith, G. L.- Holmes, E. C. (2016). “Poinar HN. 17th Century Variola Virus Reveals the Recent History of Smallpox”, Curr Biol, Dec 19; 26 (24): 3407-3412.
  • Eisenhofer, R.- Anderson, A.- Dobney, K.- Cooper, A. -Weyrich, L. (2019). “Ancient Microbial DNA in Dental Calculus: A New method for Studying Rapid Human Migration Events”, Journal of Island & Coastal Archaeology, 14: 149-162.
  • Gamble, C. (2014). Arkeolojinin Temelleri, Aktüel Arkeoloji Yayınları, İstanbul.
  • Gelabert, P.- Olalde, I.- de-Dios, T.- Civit, S.- Lalueza-Fox, C. (2017). “Malaria was a weak selective force in ancient Europeans”, Sci Rep. May 3;7 (1): 1377.
  • Gutarowska B.- Celikkol-Aydin S.- Bonifay, V. –Otlewska, A.- Aydin, E.- Oldham, A.L.- Brauer, J. I.- Duncan, K.E.- Adamiak, J.- Sunner, J. A.- Beech, I. B. (2015). Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings, Front Microbiol.
  • Higuchi, R.- Bowman, B.- Freiberger, M.- Ryder, O. A. and Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312 (5991), 282-284.
  • Jackson, P. J.- Hugh-Jones, M. E.- Adair, D. M.- Green, G.- Hill, K. K.- Kuske, C.R.- Grinberg, L. M.- Abramova, F. A. and Keim, P. (1998). “PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple Bacillus anthracis strains in different victims”, Proc Natl Acad Sci U S A, 95(3), 1224-1229.
  • Kalisz, H. M. (1988). “Microbial proteinases”, Adv Biochem Eng Biotechnol, 36: 1-65.
  • Krause-Kyora B.- Susat, J.- Key, F. M.- Kühnert, D.- Bosse, E.- Immel, A.- Rinne, C.- Kornell, S. C.- Yepes, D.- Franzenburg, S.- Heyne, H.O.- Meier, T.- Lösch, S.- Meller, H.- Friederich, S.- Nicklisch, N.- Alt, K. W.- Schreiber, S.- Tholey, A.- Herbig, A.- Nebel, A.- Krause, J. (2018). Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. Elife, May 10;7:e36666.
  • Kusters, J. G.- van Vliet, A. H. and Kuipers, E. J. (2006). “Pathogenesis of Helicobacter pylori infection”, Clinical Microbiology Reviews 19: 449–490.
  • Liu, Y.- Weyrich, L.S. and Llamas, B. (2020). “More arrows in the ancient DNA quiver: use of paleoepigenomes and paleomicrobiomes to investigate animal adaptation to environment”, Molecular Biology and Evolution 37: 307– 319.
  • Marciniak, S.- Prowse, T. L.- Herring, D. A.- Klunk, J.- Kuch, M.- Duggan, A.T.- Bondioli, L.- Holmes, E. C.- Poinar, H. N. (2016). “Plasmodium falciparum malaria in 1st-2nd century CE southern Italy”, Curr Biol, Dec 5; 2 6 (23): R1220- R1222.
  • Metcalf, J.L.- Song, S. J.- Morton, J. T.- Weiss, S.- Seguin-Orlando, A.- Joly, F.- Feh, C.- Taberlet, P.- Coissac Amir, A. E.- Willerslev, E.- Knight, R.- McKenzie, V.- Orlando L. (2017). Evaluating the impact of domestication and captivity on the horse gut microbiome, Scientific Reports Nov 14; 7 (1): 15497.
  • Moodley, Y.- Linz, B.- Bond, R. P.- Nieuwoudt, M.- Soodyall, H.- Schlebusch, C. M.- Bernhöft, S.- Hale J.- Suerbaum, S.- Mugisha, L.- van der Merwe, S. W.- Achtman, M. (2012). “Age of the association between Helicobacter pylori and man”, PLoS Pathog. 8 (5): e1002693.
  • Mullis, K. B. and Faloona, F.A. (1987). “Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction”, Meth Enzymol, 155: 335–350.
  • Mühlemann B.- Margaryan, A.- Damgaard, P.- Allentoft, M. E.- Vinner, L.- Hansen, A. J.- Weber, A.- Bazaliiskii, V. I.- Molak, M.- Arneborg, J.- Bogdanowicz, W.- Falys, C.- Sablin M.- Smrčka, V. Sten, S.- Tashbaeva, K.- Lynnerup, N.- Sikora, M.- Smith, D. J.- Fouchier, R. A. M. (2018). “Ancient human parvovirus b19 in Eurasia reveals its long-term association with humans”, PNAS 115: 7557–7562.
  • Ottoni, C.- Guellil, M.- Ozga, A. T.- Stone, A. C.- Kersten, O.- Bramanti, B.- Porcier, S.- van Neer, W. (2019). Metagenomic analysis of dental calculus in ancient Egyptian baboons, Sci Rep. Dec 23; 9 (1): 19637.
  • Ozga, A.T.- Gilby, I.- Nockerts, R. S.- Wilson, M. L.- Puseyi, A. and Stone, A. C. (2019). Oral microbiome diversity in chimpanzees from Gombe National Park. Scientific Reports 9: 17354.
  • Özbilen, S. (2020). “Arkeoloji; Geçmiş, Zaman ve Kuram”, Uluslararası Eskiçağ Tarihi Araştırmaları Dergisi, 2/1: 41 - 65.
  • Priscu, J. C.- Adams, E. E.- Lyons, W. B.- Voytek, M. A.- Mogk, D. W.- Brown, R. L.- McKay, C. P.- Takacs, C. D.- Welch, K. A.- Wolf, C. F.- Kirshtein, J. D. and Avci, R. (1999). “Geomicrobiology of subglacial ice above Lake Vostok, Antarctica”, Science, 286 (5447), 2141-2144.
  • Rasmussen, S.- Allentoft, M. E.- Nielsen, K.- Orlando, L.- Sikora, M.- Sjögren, K.G.- Pedersen, A. G.- Schubert, M.- van Dam, A.- Kapel, C. M.- Nielsen, H. B.- Brunak, S.- Avetisyan, P.- Epimakhov, A.- Khalyapin, M. V.- Gnuni, A.- Kriiska, A.- Lasak, I.- Metspalu, M.- Moiseyev, V. (2015). “Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago”, Cell, 163 (3): 571-582.
  • Renfew, C.- Bahn, P. (2017). Arkeoloji: Kuramlar, Yöntemler ve Uygulama, Homer Kitapevi, İstanbul.
  • Rivera-Perez, J. I.- Santiago-Rodriguez, T. M-, Toranzos, G. A. (2016). “Paleomicrobiology: a snapshot of ancient microbes and approaches to forensic microbiology”, Microbiology Spectrum, 4( 4): 1-14.
  • Salo, W. L.- Aufderheide, A. C.- Buikstra, J. and Holcomb, T. A. (1994). “Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy”, Proc Natl Acad Sci USA, 91 (6): 2091-2094.
  • Schopf, J. W. (2006). “Fossil evidence of Archaean life”, Philos Trans R Soc Lond B Biol Sci, 361: 869–885.
  • Schuenemann, V. J.- Singh, P.- Mendum, T. A.- Krause-Kyora, B.- Jäger, G.- Bos, K. I., Herbig, A.- Economou, C.- Benjak, A.- Busso, P.- Nebel, A.- Boldsen, J. L.- Kjellström, A.- Wu, H.- Stewart, G. R.- Taylor, G. M.- Bauer, P.- Lee, O. Y.- Wu, H. H.- Minnikin, D.E.- Besra, G.S.- Tucker, K.- Roffey, S.- Sow, S. O.- Cole, S. T.- Nieselt, K.- Krause, J. (2013). “Genome-wide comparison of medieval and modern Mycobacterium leprae”, Science, Jul 12;341 (6142): 179-83.
  • Spigelman, M. and Lemma, E. (1993). “The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons”, International Journal of Osteoarchaeology, 3 (2): 137–143.
  • Spyrou, M. A.- Keller, M.- Tukhbatova, R. I.- Scheib, C. L.- Nelson, E. and Andrades Valtueña, A. (2019). “Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes”, Nat Commun, 10: 4470.
  • Tito, R. Y.- Macmil, S.- Wiley, G.- Najar, F.- Cleeland, L.- Qu, C.- Wang, P.- Romagne, F.- Leonard, S.- Ruiz, A. J.- Reinhard, K.- Roe, B. A. and Lewis, C. M. Jr. (2008). “Phylotyping and functional analysis of two ancient human microbiomes”, PLoS One, 3(11) :e3703.
  • Tsangaras, K. and Greenwood, A. D. (2012). “Museums and disease: using tissue archive and museum samples to study pathogens”, Ann Anat, 194 (1): 58–73.
  • Sevin, V. (1999). Arkeolojik Kazı Sistemi El Kitabı, Arkeoloji ve Sanat Yayınları, İstanbul.
  • Vågene, Å. J.- Herbig, A.- Campana, M. G.- Robles García, N. M.- Warinner, C.- Sabin, S.- Spyrou, M. A.- Andrades V. A.- Huson, D.- Tuross, N.- Bos, K. I. and Krause, J. (2018). “Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico”, Nat Ecol Evol, 2 (3): 520-528.
  • Wagner, D. M.- Klunk, J.- Harbeck, M.- Devault, A.- Waglechner, N.- Sahl, J. W.- Enk, J.- Birdsell, D. N.- Kuch, M.- Lumibao, C.- Poinar, D.- Pearson, T.- Fourment, M.- Golding, B.- Riehm, J. M.- Earn, D. J.- Dewitte, S.- Rouillard, J. M.- Grupe, G.- Wiechmann, I. (2014). “Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis”, Lancet Infect Dis, 14 (4): 319-326.
  • Welker, F.- Duijm, E.- Gaag, K. J.- van der Geel, B.- van Knijff, P. De.- Leeuwen, J.- van Mol, D.- Plicht, J.- van der Raes, N.- Reumer, J.- Gravendeel, B. (2014). “Analysis of coprolites from the extinct mountain goat Myotragus balearicus”, Quaternary Research 81(1): 106–116.
  • Weyrich, L. S. and Pérez, V. (2023). Archaeological Microbiology. In:Handbook of Archaeological Sciences, Second Edition, Edited by A. Mark Pollard, Ruth Ann Armitage, and Cheryl A. Makarewicz. John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Arkeoloji (Diğer)
Bölüm Makaleler
Yazarlar

Oktay Keskin 0000-0002-5977-7872

Yusuf Albayrak 0000-0002-2001-6718

Erken Görünüm Tarihi 14 Aralık 2023
Yayımlanma Tarihi 18 Aralık 2023
Gönderilme Tarihi 22 Kasım 2023
Kabul Tarihi 5 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Keskin, O., & Albayrak, Y. (2023). PALEOMİKROBİYOLOJİ: ARKEOLOJİDEN MİKROBİYOLOJİYE. Karadeniz Uluslararası Bilimsel Dergi(60), 111-126. https://doi.org/10.17498/kdeniz.1394502