Araştırma Makalesi
BibTex RIS Kaynak Göster

Matematik Öğretmen Adaylarının Kesirlere İlişkin Özelleştirilmiş Alan Bilgilerinin Öğretim Etkinliklerine Yansıması

Yıl 2022, Cilt: 23 Sayı: Özel Sayı, 330 - 384, 26.03.2022

Öz

Bu çalışmanın amacı ilköğretim matematik öğretmen adaylarının kesirlerde çarpma ve bölme işlemleri konusundaki özelleştirilmiş alan bilgilerinin öğretim etkinliklerine nasıl yansıdığını ortaya çıkarmaktır. Öğretmen adaylarının kesirlerde çarpma ve bölme işlemleri ile ilgili özelleştirilmiş alan bilgileri Ball, Thames ve Phelps (2008) tarafından ortaya atılan teorik çerçevede incelenmiştir. Nitel olarak tasarlanan bu çalışmada katılımcılar devlet üniversitesinde ilköğretim matematik öğretmenliği bölümünde dördüncü sınıfta öğrenim gören öğretmen adayları arasından amaçlı olarak seçilmiştir. Veri toplama araçları öğretmen adaylarının oluşturdukları gerçekçi problemler, ders planları, mikro öğretim ve görüşme esnasında alınan ses ve video kayıtlarının transkriptinden oluşmaktadır. Araştırmanın bulguları toplanılan verilere ait kodlamalar (temsiller, açıklama ve gerekçelendirme) şeklinde üç başlığa göre yapılandırılmıştır. Araştırmanın sonuçları öğretmen adaylarının temsil türleri arasında geçiş yapmakta zorluk çektiklerini göstermektedir. Ayrıca bulgular öğretmen adaylarının verilen işlem için problem kurmakta zorluk çektiklerini, model ve problemi materyal ile açıklamakta yetersiz kaldıklarını ortaya koymaktadır. Araştırmadan çıkan diğer bir bulgu gerçek yaşam durumları temsillerinde sorun yaşamayan öğretmen adaylarının ders planlarındaki açıklamaları ve mikro öğretim etkinliklerinin örtüşmesidir.

Destekleyen Kurum

Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2019/159

Kaynakça

  • Alenazi, A. (2016). Examining middle school pre-service teachers’ knowledge of fraction division interpretations. International Journal of Mathematical Education in Science and Technology, 47(5), 696-716.
  • Armstrong, B. E.,& Bezuk, N. (1995). Multiplication and division of fractions: The search for meaning. In J. Sowder & B. P. Schappelle (Eds.). Providing a foundation for teaching mathematics in the middle grades, 85–120. New York: SUNY.
  • Aytekin, C. & Şahiner, Y. (2020) "An investigation of preservice mathematics teachers' teaching processes about" procedural and conceptual knowledge" related to division with fractions." Elementary Education Online, 19(2) 958-981.
  • Azim, D. S. (1995). Preservice elementary teachers’ understanding of multiplication with fractions. (Unpublished doctoral dissertation). Washington State University. the USA
  • Back, R. J., Manilla, L. & Wallin, S. (2009). Student justifications in high school mathematics. Proceedings of the Sixth Conference of European Research in Mathematics Education, Lyon, France
  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The elementary school journal, 90(4), 449-466.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special. Journal of teacher education, 59(5), 389-407.
  • Behr, M. J., Harel, G., Post, T., & Lesh, R. (1994). Units of quantity: A conceptual basis common to additive and multiplicative structures. The development of multiplicative reasoning in the learning of mathematics, 121-176.
  • Behr, M. J., Lesh, R., Post, T., & Silver, E. A. (1983). Rational number concepts. Acquisition of mathematics concepts and processes, 91-126.
  • Behr, M. J., Wachsmuth, I., Post, T., ve Lesh, R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15(5), 323-341.
  • Birgin, O., & Gürbüz, R. (2009). İlköğretim II. kademe öğrencilerinin rasyonel sayılar konusundaki işlemsel ve kavramsal bilgi düzeylerinin incelenmesi. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 22(2), 529-550.
  • Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental psychology, 27(5), 777. Çiftçi, K., Yildiz, P., & Bozkurt, E. (2015). Ortaokul matematik öğretmenlerinin materyal kullanımına ilişkin görüşleri. Eskişehir Osmangazi Üniversitesi Eğitimde Politika Analizi Dergisi, 4, 79-89.
  • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199-219.
  • Gökkurt, B., Şahin, Ö., Soylu, Y. & Soylu, C. (2013). Examining Pre-Service Teachers’ Pedagogical Content Knowledge on Fractions in Terms of Students’ Errors. International Online Journal of Educational Sciences, 5(3), 719-735.
  • Gökmen, A., Budak, A., & Ertekin, E. (2016). İlköğretim öğretmenlerinin matematik öğretiminde somut materyal kullanmaya yönelik inançları ve sonuç beklentileri. Kastamonu Education Journal, 24(3), 1213-1228.
  • Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice teachers' misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20(1), 95-102.
  • Gudmundsdottir, S., & Shulman, L. (1987). Pedagogical content knowledge in social studies. Scandinavian Journal of Educationl Research, 31(2), 59-70.
  • Haser, Ç., Kayan, R., & Bostan, M. I. (2013). Matematik öğretmen adaylarının matematiğin doğası, öğretimi ve öğrenimi hakkındaki inanışları. Eğitim ve Bilim, 38(167).
  • Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan Publishing Company
  • Işık, C., & Kar, T. (2012). İlköğretim matematik öğretmeni adaylarının kesirlerde bölmeye yönelik kurdukları problemlerde hata analizi. Kuram ve Uygulamada Eğitim Bilimleri, 12(3), 2289-2309.
  • Işık, C., (2011). İlköğretim matematik öğretmeni adaylarının kesirlerde çarpma ve bölmeye yönelik kurdukları problemlerin kavramsal analizi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 41.
  • Işıksal, M., & Çakıroğlu, E. (2006). İlköğretim matematik öğretmen adaylarının matematiğe ve matematik öğretimine yönelik yeterlik algıları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 31(31), 74-84.
  • İskenderoğlu, T. A., Türk, Y., & İskenderoğlu, M. (2016). İlköğretim matematik öğretmeni adaylarının somut materyalleri tanıma-kullanma durumları ve matematik öğretiminde kullanmalarına yönelik öz-yeterlikleri. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 1(39), 1-15.
  • Karasar, N. (2005). Bilimsel araştırma yöntemi (17. Baskı). Ankara: Nobel yayın dağıtım, 86.
  • Kılıç, H., Pekkan, Z. T., & Karatoprak, R. (2013). Materyal kullaniminin matematiksel düşünme becerisine etkisi/the effects of using materials on mathematical thinking skills. Eğitimde Kuram ve Uygulama, 9(4), 544-556.
  • Kieren, T. E. (1993). Rational and fractional numbers: From quotient fields to recursive understanding. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Studies in mathematical thinking and learning. Rational numbers: An integration of research (p. 49–84). Lawrence Erlbaum Associates, Inc.
  • Koren, M. (2004). Acquiring the concept of signed numbers: Incorporating practically- based and mathematically-based explanations. Aleh, 32, 18-24.
  • Kurt, G. (2006). Middle grade students’ abilities in translating among representations of fractions. Unpublished master’s thesis, Middle East Technical University, Ankara.
  • Kutluk, B. (2011). İlköğretim matematik öğretmenlerinin örüntü kavramına ilişkin öğrenci güçlükleri bilgilerinin incelenmesi (Doctoral dissertation), DEÜ Eğitim Bilimleri Enstitüsü, İzmir.
  • Lamon, S. J. (1996). The development of unitizing: Its role in children’s partitioning strategies. Journal for Research in Mathematics Education, 27, 170-193.
  • Lamon, S. J. (1999). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers. Mahwah, N. J.: Erlbaum.
  • Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. Second handbook of research on mathematics teaching and learning, 1, 629-667.
  • Lee, S. J., Brown, R. E., & Orrill, C. H. (2011). Mathematics teachers' reasoning about fractions and decimals using drawn representations. Mathematical Thinking and Learning, 13(3), 198-220.
  • Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Problems of representations in the teaching and learning of mathematics (pp. 33-40). Lawrence Erlbaum.
  • Levenson, E., Tsamir, P., & Tirosh, D. (2010). Mathematically based and practically based explanations in the elementary school: teachers’ preferences. Journal of Mathematics Teacher Education, 13(4), 345-369.
  • Li, Y. (2008). What do students need to learn about division of fractions? Mathematics Teaching in the Middle School, 13, 546–552
  • Li, Y.,& Kulm, G. (2008). Knowledge and confidence of Preservice mathematics teachers: The case of fraction division. ZDM–The International Journal on Mathematics Education, 40, 833–843
  • Lo, J.J. ve Luo, F. (2012). Preservice elementary teachers’ knowledge of fraction division. J Math Teacher Educ, 15, 481–500.
  • Ma, L. (1996). Profound understanding of fundamental mathematics: What is it, why is it important, and how is it attained. Unpublished doctoral dissertation, Stanford University, theUSA.
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Mack, N. K. (1990). Learning fractions with understanding: Building on informal knowledge. Journal for Research in Mathematics Education, 16-32.
  • Mulligan, J. T., & Mitchelmore, M. C. (1997). Young children's intuitive models of multiplication and division. Journal for Research in Mathematics Education, 309-330.
  • Ohlsson, S. (1988). Mathematical meaning and applicational meaning in the semantics of fractions and related concepts. In J. Hiebert, ve M. J. Behr (Eds.), Number concepts and operations in the middle grades (pp. 53-92). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Özdemir, İ. E. Y. (2008). Sınıf öğretmeni adaylarının matematik öğretiminde materyal kullanımına ilişkin bilişsel becerileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 35(35), 362-373.
  • Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding, Theory into Practice, 40(2), 118-127.
  • Perry, M. (2000). Explanations of mathematical concepts in Japanese, Chinese, and U.S. first- and fifthgrade classrooms. Cognition and Instruction, 18(2), 181–207.
  • Putnam, R. (1992). Teaching the ‘‘hows’’ of mathematics for everyday life: A case of a fifth-grade teacher. Elementary School Journal, 93(2), 163–177.
  • Raman, M. (2002). Coordinating informal and formal aspects of mathematics: Student behavior and textbook messages. Journal of Mathematical Behavior, 21, 135–150
  • Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher’s mathematics beliefs and teaching practices. Journal for Research in Mathematics Education, 28(6), 552-575.
  • Schoenfeld, A. H. (2014). Mathematical problem solving. Elsevier.
  • Seçir, S. (2017). İlköğretim Matematik Öğretmen Adaylarının Kesirlerle Çarpma ve Bölme İşlemlerine İlişkin Özelleştirilmiş Alan Bilgilerinin Gelişiminin İncelenmesi .(Yayınlanmamış Doktora Tezi). Gazi Üniversitesi, Ankara
  • Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard educational review, 57(1), 1-23.
  • Simon, M. A. (1993). Prospective elementary teachers' knowledge of division. Journal for Research in Mathematics education, 233-254.
  • Stein, M. K., & Bovalino, J. W. (2001). Manipulatives: One piece of the puzzle. Mathematics Teaching in the Middle School, 6(6), 356.
  • Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research. Dordrecht, The Netherlands: Kluwer Academic Publisher
  • Tirosh, D., & Graeber, A. O. (1991). The effect of problem type and common misconceptions on preservice elementary teachers' thinking about division. School Science and Mathematics, 91(4), 157-163.
  • Toluk, Z. (2002). İlkokul öğrencilerinin bölme işlemi ve rasyonel sayıları ilişkilendirme süreçleri. Boğaziçi Üniversitesi Eğitim Dergisi, 19(2), 81-101.
  • Umay, A. (2003). Matematiksel muhakeme yeteneği. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 24(24).234-243.
  • Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54, 9–35.
  • Wu, H. (1999). Basic skills versus conceptual understanding: A bogus dichotomy. American Educator, 23(3), 14–19, 50–52.
  • Yavuz, O. C. (2013). Temel Eğitimde Kesirler Konusunda Materyalin Rolü, Middle Eastern & African Journal of Educational Research, 5, 137-147
  • Yeşildere, S. (2008). İlköğretim matematik öğretmen adaylarının sayı örüntüleri ile ilgili pedagojik alan bilgilerinin incelenmesi. VIII Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi. Abant İzzet Baysal Üniversitesi, Bolu.

Reflection of Pre-service Mathematics Teachers' Specialized Content Knowledge on Fractions to Teaching Activities

Yıl 2022, Cilt: 23 Sayı: Özel Sayı, 330 - 384, 26.03.2022

Öz

The aim of this study is to reveal how pre-service mathematics teachers' specialized field knowledge about multiplication and division operations in fractions is reflected in their teaching activities. The pre-service teachers' specialized field knowledge about multiplication and division operations in fractions was examined in the theoretical framework proposed by Ball, Thames and Phelps (2008). In this qualitatively designed study, the participants were purposefully selected from among the fourth grade teacher candidates studying at the department of primary education in mathematics at a state university. Data collection tools consist of realistic problems and lesson plans created by prospective teachers, , transcripts of audio and video recordings of during micro-teaching activities and the interview. The findings of the research are structured according to three headings as coding (representations, explanation and justification) of the collected data. The results of the study show that pre-service teachers have difficulty in switching between representation types. In addition, the findings reveal that teacher candidates have difficulty in posing problems for the given procedure, and they are insufficient to explain the model and the problem with the material. Another finding of the research is the overlap of the explanations in the lesson plans and micro-teaching activities of the pre-service teachers who did not have any problems in representing real life situations.

Proje Numarası

2019/159

Kaynakça

  • Alenazi, A. (2016). Examining middle school pre-service teachers’ knowledge of fraction division interpretations. International Journal of Mathematical Education in Science and Technology, 47(5), 696-716.
  • Armstrong, B. E.,& Bezuk, N. (1995). Multiplication and division of fractions: The search for meaning. In J. Sowder & B. P. Schappelle (Eds.). Providing a foundation for teaching mathematics in the middle grades, 85–120. New York: SUNY.
  • Aytekin, C. & Şahiner, Y. (2020) "An investigation of preservice mathematics teachers' teaching processes about" procedural and conceptual knowledge" related to division with fractions." Elementary Education Online, 19(2) 958-981.
  • Azim, D. S. (1995). Preservice elementary teachers’ understanding of multiplication with fractions. (Unpublished doctoral dissertation). Washington State University. the USA
  • Back, R. J., Manilla, L. & Wallin, S. (2009). Student justifications in high school mathematics. Proceedings of the Sixth Conference of European Research in Mathematics Education, Lyon, France
  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The elementary school journal, 90(4), 449-466.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special. Journal of teacher education, 59(5), 389-407.
  • Behr, M. J., Harel, G., Post, T., & Lesh, R. (1994). Units of quantity: A conceptual basis common to additive and multiplicative structures. The development of multiplicative reasoning in the learning of mathematics, 121-176.
  • Behr, M. J., Lesh, R., Post, T., & Silver, E. A. (1983). Rational number concepts. Acquisition of mathematics concepts and processes, 91-126.
  • Behr, M. J., Wachsmuth, I., Post, T., ve Lesh, R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15(5), 323-341.
  • Birgin, O., & Gürbüz, R. (2009). İlköğretim II. kademe öğrencilerinin rasyonel sayılar konusundaki işlemsel ve kavramsal bilgi düzeylerinin incelenmesi. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 22(2), 529-550.
  • Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental psychology, 27(5), 777. Çiftçi, K., Yildiz, P., & Bozkurt, E. (2015). Ortaokul matematik öğretmenlerinin materyal kullanımına ilişkin görüşleri. Eskişehir Osmangazi Üniversitesi Eğitimde Politika Analizi Dergisi, 4, 79-89.
  • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199-219.
  • Gökkurt, B., Şahin, Ö., Soylu, Y. & Soylu, C. (2013). Examining Pre-Service Teachers’ Pedagogical Content Knowledge on Fractions in Terms of Students’ Errors. International Online Journal of Educational Sciences, 5(3), 719-735.
  • Gökmen, A., Budak, A., & Ertekin, E. (2016). İlköğretim öğretmenlerinin matematik öğretiminde somut materyal kullanmaya yönelik inançları ve sonuç beklentileri. Kastamonu Education Journal, 24(3), 1213-1228.
  • Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice teachers' misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20(1), 95-102.
  • Gudmundsdottir, S., & Shulman, L. (1987). Pedagogical content knowledge in social studies. Scandinavian Journal of Educationl Research, 31(2), 59-70.
  • Haser, Ç., Kayan, R., & Bostan, M. I. (2013). Matematik öğretmen adaylarının matematiğin doğası, öğretimi ve öğrenimi hakkındaki inanışları. Eğitim ve Bilim, 38(167).
  • Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan Publishing Company
  • Işık, C., & Kar, T. (2012). İlköğretim matematik öğretmeni adaylarının kesirlerde bölmeye yönelik kurdukları problemlerde hata analizi. Kuram ve Uygulamada Eğitim Bilimleri, 12(3), 2289-2309.
  • Işık, C., (2011). İlköğretim matematik öğretmeni adaylarının kesirlerde çarpma ve bölmeye yönelik kurdukları problemlerin kavramsal analizi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 41.
  • Işıksal, M., & Çakıroğlu, E. (2006). İlköğretim matematik öğretmen adaylarının matematiğe ve matematik öğretimine yönelik yeterlik algıları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 31(31), 74-84.
  • İskenderoğlu, T. A., Türk, Y., & İskenderoğlu, M. (2016). İlköğretim matematik öğretmeni adaylarının somut materyalleri tanıma-kullanma durumları ve matematik öğretiminde kullanmalarına yönelik öz-yeterlikleri. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 1(39), 1-15.
  • Karasar, N. (2005). Bilimsel araştırma yöntemi (17. Baskı). Ankara: Nobel yayın dağıtım, 86.
  • Kılıç, H., Pekkan, Z. T., & Karatoprak, R. (2013). Materyal kullaniminin matematiksel düşünme becerisine etkisi/the effects of using materials on mathematical thinking skills. Eğitimde Kuram ve Uygulama, 9(4), 544-556.
  • Kieren, T. E. (1993). Rational and fractional numbers: From quotient fields to recursive understanding. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Studies in mathematical thinking and learning. Rational numbers: An integration of research (p. 49–84). Lawrence Erlbaum Associates, Inc.
  • Koren, M. (2004). Acquiring the concept of signed numbers: Incorporating practically- based and mathematically-based explanations. Aleh, 32, 18-24.
  • Kurt, G. (2006). Middle grade students’ abilities in translating among representations of fractions. Unpublished master’s thesis, Middle East Technical University, Ankara.
  • Kutluk, B. (2011). İlköğretim matematik öğretmenlerinin örüntü kavramına ilişkin öğrenci güçlükleri bilgilerinin incelenmesi (Doctoral dissertation), DEÜ Eğitim Bilimleri Enstitüsü, İzmir.
  • Lamon, S. J. (1996). The development of unitizing: Its role in children’s partitioning strategies. Journal for Research in Mathematics Education, 27, 170-193.
  • Lamon, S. J. (1999). Teaching fractions and ratios for understanding: essential content knowledge and instructional strategies for teachers. Mahwah, N. J.: Erlbaum.
  • Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. Second handbook of research on mathematics teaching and learning, 1, 629-667.
  • Lee, S. J., Brown, R. E., & Orrill, C. H. (2011). Mathematics teachers' reasoning about fractions and decimals using drawn representations. Mathematical Thinking and Learning, 13(3), 198-220.
  • Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Problems of representations in the teaching and learning of mathematics (pp. 33-40). Lawrence Erlbaum.
  • Levenson, E., Tsamir, P., & Tirosh, D. (2010). Mathematically based and practically based explanations in the elementary school: teachers’ preferences. Journal of Mathematics Teacher Education, 13(4), 345-369.
  • Li, Y. (2008). What do students need to learn about division of fractions? Mathematics Teaching in the Middle School, 13, 546–552
  • Li, Y.,& Kulm, G. (2008). Knowledge and confidence of Preservice mathematics teachers: The case of fraction division. ZDM–The International Journal on Mathematics Education, 40, 833–843
  • Lo, J.J. ve Luo, F. (2012). Preservice elementary teachers’ knowledge of fraction division. J Math Teacher Educ, 15, 481–500.
  • Ma, L. (1996). Profound understanding of fundamental mathematics: What is it, why is it important, and how is it attained. Unpublished doctoral dissertation, Stanford University, theUSA.
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Mack, N. K. (1990). Learning fractions with understanding: Building on informal knowledge. Journal for Research in Mathematics Education, 16-32.
  • Mulligan, J. T., & Mitchelmore, M. C. (1997). Young children's intuitive models of multiplication and division. Journal for Research in Mathematics Education, 309-330.
  • Ohlsson, S. (1988). Mathematical meaning and applicational meaning in the semantics of fractions and related concepts. In J. Hiebert, ve M. J. Behr (Eds.), Number concepts and operations in the middle grades (pp. 53-92). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Özdemir, İ. E. Y. (2008). Sınıf öğretmeni adaylarının matematik öğretiminde materyal kullanımına ilişkin bilişsel becerileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 35(35), 362-373.
  • Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding, Theory into Practice, 40(2), 118-127.
  • Perry, M. (2000). Explanations of mathematical concepts in Japanese, Chinese, and U.S. first- and fifthgrade classrooms. Cognition and Instruction, 18(2), 181–207.
  • Putnam, R. (1992). Teaching the ‘‘hows’’ of mathematics for everyday life: A case of a fifth-grade teacher. Elementary School Journal, 93(2), 163–177.
  • Raman, M. (2002). Coordinating informal and formal aspects of mathematics: Student behavior and textbook messages. Journal of Mathematical Behavior, 21, 135–150
  • Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher’s mathematics beliefs and teaching practices. Journal for Research in Mathematics Education, 28(6), 552-575.
  • Schoenfeld, A. H. (2014). Mathematical problem solving. Elsevier.
  • Seçir, S. (2017). İlköğretim Matematik Öğretmen Adaylarının Kesirlerle Çarpma ve Bölme İşlemlerine İlişkin Özelleştirilmiş Alan Bilgilerinin Gelişiminin İncelenmesi .(Yayınlanmamış Doktora Tezi). Gazi Üniversitesi, Ankara
  • Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard educational review, 57(1), 1-23.
  • Simon, M. A. (1993). Prospective elementary teachers' knowledge of division. Journal for Research in Mathematics education, 233-254.
  • Stein, M. K., & Bovalino, J. W. (2001). Manipulatives: One piece of the puzzle. Mathematics Teaching in the Middle School, 6(6), 356.
  • Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research. Dordrecht, The Netherlands: Kluwer Academic Publisher
  • Tirosh, D., & Graeber, A. O. (1991). The effect of problem type and common misconceptions on preservice elementary teachers' thinking about division. School Science and Mathematics, 91(4), 157-163.
  • Toluk, Z. (2002). İlkokul öğrencilerinin bölme işlemi ve rasyonel sayıları ilişkilendirme süreçleri. Boğaziçi Üniversitesi Eğitim Dergisi, 19(2), 81-101.
  • Umay, A. (2003). Matematiksel muhakeme yeteneği. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 24(24).234-243.
  • Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54, 9–35.
  • Wu, H. (1999). Basic skills versus conceptual understanding: A bogus dichotomy. American Educator, 23(3), 14–19, 50–52.
  • Yavuz, O. C. (2013). Temel Eğitimde Kesirler Konusunda Materyalin Rolü, Middle Eastern & African Journal of Educational Research, 5, 137-147
  • Yeşildere, S. (2008). İlköğretim matematik öğretmen adaylarının sayı örüntüleri ile ilgili pedagojik alan bilgilerinin incelenmesi. VIII Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi. Abant İzzet Baysal Üniversitesi, Bolu.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri
Bölüm Araştırma Makaleleri
Yazarlar

Melike Tural Sönmez 0000-0002-3302-6982

Melisa Ayça Karacaköylü 0000-0002-0746-5471

Proje Numarası 2019/159
Yayımlanma Tarihi 26 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 23 Sayı: Özel Sayı

Kaynak Göster

APA Tural Sönmez, M., & Karacaköylü, M. A. (2022). Matematik Öğretmen Adaylarının Kesirlere İlişkin Özelleştirilmiş Alan Bilgilerinin Öğretim Etkinliklerine Yansıması. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 23(Özel Sayı), 330-384. https://doi.org/10.29299/kefad.891260

2562219122   19121   19116   19117     19118       19119       19120     19124